USING ARDUINO TO TEACH ELECTRICITY: A CASE STUDY WITH EJA STUDENTS FROM THE PERSPECTIVE OF MEANINGFUL LEARNING

Authors

  • Gene Clebson Apolinário Santos Autor
  • José Vicente Cardoso Santos Autor

DOI:

https://doi.org/10.63330/armv1n5-002

Keywords:

Arduino, Meaningful learning, Physics teaching, Youth and Adult Education, Electricity

Abstract

The use of accessible technologies in Physics education has proven to be an effective alternative to promote meaningful learning, especially in Youth and Adult Education (EJA). This article aims to analyze, through a qualitative case study, the effects of implementing a didactic sequence using the Arduino platform in the teaching of electricity in an EJA class. Data were collected through diagnostic questionnaires, direct observations, practical activities, and post-tests, all analyzed based on David Ausubel’s Theory of Meaningful Learning. The results indicate that the use of Arduino enhanced student engagement, the re-signification of abstract concepts such as electric current, voltage, and resistance, and the strengthening of academic self-esteem. It was also found that learning was enhanced by valuing students’ prior knowledge, contextualizing content, and incorporating practical experimentation. It is concluded that the combination of active methodologies, educational technologies, and the principles of meaningful learning represents a powerful strategy for Physics teaching in EJA, contributing to a critical, autonomous, and socially relevant education.

References

AUSUBEL, D. P.; NOVAK, J. D.; HANESIAN, H. Psicologia educacional. 2. ed. Rio de Janeiro: Interamericana, 1980.

BRASIL. Lei nº 9.394, de 20 de dezembro de 1996. Estabelece as diretrizes e bases da educação nacional. Diário Oficial da União: seção 1, Brasília, DF, p. 27833, 23 dez. 1996.

BRASIL. Ministério da Educação. Parâmetros Curriculares Nacionais: Ensino Médio – Ciências da Natureza, Matemática e suas Tecnologias. Brasília: MEC/SEB, 1999.

FREIRE, P. Pedagogia da autonomia: saberes necessários à prática educativa. 33. ed. São Paulo: Paz e Terra, 1996.

GADOTTI, M. História das ideias pedagógicas. 4. ed. São Paulo: Ática, 1995.

GINGL, Z. et al. A universal Arduino-based experimental system for teaching natural sciences. European Journal of Physics, v. 40, n. 4, p. 045702, 2019. DOI: https://doi.org/10.1088/1361-6404/ab0c90.

MARIN, M. A. Engagement in online learning environments using Arduino microcontrollers. International Journal of Online and Biomedical Engineering, v. 17, n. 6, p. 67–76, 2021. DOI: https://doi.org/10.3991/ijoe.v17i06.21609.

MOREIRA, M. A. Aprendizagem significativa: a teoria de David Ausubel. São Paulo: Centauro, 2010.

MOURA, A. C. C. et al. Termometria e inovações no ensino com uso do Arduino: uma experiência no IFAM/Campus Maués. Educitec - Revista de Estudos e Pesquisas sobre Ensino Tecnológico, v. 5, n. 1, p. 1-20, 2019. DOI: https://doi.org/10.31417/educitec.v5i1.924.

NUSSENZVEIG, H. M. Curso de Física Básica: Eletromagnetismo. 3. ed. São Paulo: Edgard Blücher, 1997. v. 3.

RODRIGUES-MOURA, D. C. Sequência didática baseada no modelo DBR-TLS com alfabetização científica e técnica utilizando Arduino. Revista Brasileira de Ensino de Ciência e Tecnologia, v. 9, n. 1, p. 122–139, 2016. DOI: https://doi.org/10.3895/rbect.v9n1.4139.

SANTOS, G. C. A.; NASCIMENTO, M. F.; SOUZA, A. S. O ensino de Física na EJA: limites e possibilidades. Revista de Ensino de Ciências e Matemática, v. 7, n. 3, p. 12–28, 2016. DOI: https://doi.org/10.26843/rencima.v7i3.1435.

TUFINO, A.; ORGANTINI, G. Low-cost Arduino and smartphone-based introductory mechanics laboratory. European Journal of Physics, v. 44, n. 2, 2023. DOI: https://doi.org/10.1088/1361-6404/acb8d9.

Published

2025-07-10

How to Cite

USING ARDUINO TO TEACH ELECTRICITY: A CASE STUDY WITH EJA STUDENTS FROM THE PERSPECTIVE OF MEANINGFUL LEARNING. (2025). Aurum Revista Multidisciplinar, 1(5), 16-26. https://doi.org/10.63330/armv1n5-002