LOAD FORECASTING IN DISTRIBUTION SYSTEMS: REGULATORY GUIDELINES, MATHEMATICAL MODELS AND CHALLENGES IN ESTIMATING DEMAND
DOI:
https://doi.org/10.63330/aurumpub.005-005Keywords:
Load Forecasting, Mathematical Models, Power System Planning, Demand Optimization, Distribution SystemsAbstract
Load forecasting is a crucial element for the planning and efficient operation of Electrical Distribution Systems (EDS), enabling optimized resource allocation, overload mitigation, and assurance of energy supply quality. The Brazilian Electricity Regulatory Agency (ANEEL) establishes regulatory guidelines for demand forecasting through Module 2 of the Electricity Distribution Procedures in the National Electric System (PRODIST), requiring utilities and distribution companies to maintain updated databases and conduct periodic studies. Various mathematical models are employed to estimate load evolution, ranging from traditional approaches such as linear and polynomial models to more advanced techniques like artificial neural networks and genetic algorithms. Furthermore, load forecasting must consider external factors influencing energy consumption, including climatic variables, socioeconomic profile changes, and energy efficiency policies. This study presents a detailed analysis of the regulatory procedures established by ANEEL, discusses the main mathematical models used for load forecasting, and explores the challenges associated with demand projection across different time horizons.
Downloads
References
AGÊNCIA NACIONAL DE ENERGIA ELÉTRICA (ANEEL). Módulo 2 - Planejamento da Expansão do Sistema de Distribuição. Brasília, 2021. Disponível em: https://www2.aneel.gov.br/cedoc/aren2021956_2_1.pdf. Acesso em: 03 de janeiro de 2025.
AGUIRRE, L. A. Introdução à Identificação de Sistemas: Técnicas Lineares e Não Lineares Aplicadas a Sistemas Reais. 3. ed. Belo Horizonte: UFMG, 2007.
ALMEIDA, C.; FISHWICH, P. A.; TANG, Z. Time series forecasting using neural networks vs. Box-Jenkins methodology. Simulation Councils, [S. l.], p. 303-310, nov. 1991.
KAGAN, N. et al. Métodos de Otimização Aplicados a Sistemas Elétricos de Potência. São Paulo: Blucher, 2009.
MACHADO, M. V. Modelagem Matemática do Tempo de Vida de Baterias Utilizando Modelos Autorregressivos. 2014. Dissertação (Mestrado em Modelagem Matemática) – Universidade Regional do Noroeste do Estado do Rio Grande do Sul, Unijuí, 2014.
RIBEIRO, C. V. Um ambiente para previsão de séries temporais utilizando comitês de aprendizado. 2009. Dissertação (Mestrado) – Instituto Militar de Engenharia, Rio de Janeiro, 2009.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Joelson Lopes da Paixão, Alzenira da Rosa Abaide (Autor)

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.