BIOLOGIA PREDITIVA: A REVOLUÇÃO IMPULSIONADA PELA INTELIGÊNCIA ARTIFICIAL
DOI:
https://doi.org/10.63330/aurumpub.015-010Palavras-chave:
Machine learning, Bioinformática, AlphaFold, Resistência aos antimicrobianos, ArqueiasResumo
A convergência da inteligência artificial e da bioinformática iniciou uma revolução científica, transformando a nossa capacidade de interpretar a complexidade biológica. Este trabalho argumenta que a recente solução para o problema do enovelamento de proteínas, alcançada por ferramentas de IA como o AlphaFold, proporcionou um arsenal tecnológico sem precedentes para enfrentar crises de saúde globais como a resistência aos antimicrobianos (RAM). Apresenta-se a "bioprospeção digital" como um novo paradigma que, em vez de cultivar microrganismos, explora diretamente os dados genómicos e proteómicos. Este método permite agora investigar fronteiras biológicas antes inacessíveis, destacando o domínio das Arqueias como um alvo de especial interesse. Devido à sua bioquímica única e por ser um ramo da vida vastamente inexplorado, a recente análise computacional dos seus proteomas revelou um rico potencial para novas famílias de compostos antimicrobianos ("arqueasinas"), validando assim a sua importância como uma fonte crucial para a descoberta de futuros antibióticos. Assim, a transição de uma ciência descritiva para uma preditiva, impulsionada por esta sinergia, inaugura uma nova era no desenho de fármacos e na engenharia biológica.
Downloads
Referências
ABDELSATTAR, Abdallah S. et al. The Role of Molecular Modeling and Bioinformatics in Treating a Pandemic Disease: The Case of COVID-19. The Open COVID Journal, v. 1, n. 1, p. 216–234, 23 dez. 2021.
ABRAMSON, Josh et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature, v. 630, n. 8016, p. 493–500, 13 jun. 2024.
AHMED, Sirwan Khalid et al. Antimicrobial resistance: Impacts, challenges, and future prospects. Journal of Medicine, Surgery, and Public Health, v. 2, p. 100081, 1 abr. 2024.
AL-JANABI, Aisha. Has DeepMind’s AlphaFold Solved the Protein Folding Problem? BioTechniques, v. 72, n. 3, p. 73–76, 4 mar. 2022.
AMUAH, Charles L. Y. et al. Feasibility Study of the Use of Handheld NIR Spectrometer for Simultaneous Authentication and Quantification of Quality Parameters in Intact Pineapple Fruits. Journal of Spectroscopy, v. 2019, n. 1, p. 5975461, 1 jan. 2019.
ANFINSEN, Christian B. Principles that Govern the Folding of Protein Chains. Science, v. 181, n. 4096, p. 223–230, 20 jul. 1973a.
BAKER, Brett J. et al. Diversity, ecology and evolution of Archaea. Nature Microbiology, v. 5, n. 7, p. 887–900, 1 jul. 2020.
BASILE, Teodora; MARSICO, Antonio Domenico; PERNIOLA, Rocco. Use of Artificial Neural Networks and NIR Spectroscopy for Non-Destructive Grape Texture Prediction. Foods, v. 11, n. 3, p. 281, 1 fev. 2022.
BEHLING, Anna H. et al. Addressing antibiotic resistance: computational answers to a biological problem? Current Opinion in Microbiology, v. 74, p. 102305, 1 ago. 2023.
BEHZADI, Payam; GAJDÁCS, Márió. Worldwide Protein Data Bank (wwPDB): A virtual treasure for research in biotechnology. European Journal of Microbiology and Immunology, v. 11, n. 4, p. 77–86, 3 fev. 2022.
BELLER, Harry R. et al. Discovery of enzymes for toluene synthesis from anoxic microbial communities. Nature Chemical Biology, v. 14, n. 5, p. 451–457, 19 maio 2018.
BERTOLINE, Letícia M. F. et al. Before and after AlphaFold2: An overview of protein structure prediction. Frontiers in Bioinformatics, v. 3, p. 1120370, 28 fev. 2023.
BIAN, Yuemin; XIE, Xiang-Qun. Computational Fragment-Based Drug Design: Current Trends, Strategies, and Applications. The AAPS Journal, v. 20, n. 3, p. 59, 9 maio 2018.
BLANCO-GONZÁLEZ, Alexandre et al. The Role of AI in Drug Discovery: Challenges, Opportunities, and Strategies. Pharmaceuticals, v. 16, n. 6, p. 891, 1 jun. 2023.
BORBA, Karla Rodrigues et al. Non-invasive quantification of vitamin C, citric acid, and sugar in ‘Valência’ oranges using infrared spectroscopies. Journal of Food Science and Technology, v. 58, n. 2, p. 731–738, 1 fev. 2021.
CAROLINA CABRAL DA SILVA, Ruana; CIDINARIA SILVA ALVES, Maria. Os avanços e desafios da bioinformática aplicada à saúde: uma revisão. Diversitas Journal, v. 9, n. 3, 9 ago. 2024.
CHABAN, Bonnie; NG, Sandy Y. M.; JARRELL, Ken F. Archaeal habitats — from the extreme to the ordinary. https://doi.org/10.1139/w05-147, v. 52, n. 2, p. 73–116, fev. 2011.
CLARK, Alexis J.; LILLARD, James W. A Comprehensive Review of Bioinformatics Tools for Genomic Biomarker Discovery Driving Precision Oncology. Genes, v. 15, n. 8, p. 1036, 6 ago. 2024.
COSTESSI, Adalberto et al. Novel sequencing technologies to support industrial biotechnology. FEMS Microbiology Letters, v. 365, n. 16, 1 ago. 2018.
DA SILVA ALVES, Jasciane et al. Non-Destructive Detection of Current Internal Disorders and Prediction of Future Appearance in Mango Fruit Using Portable Vis-NIR Spectroscopy. Horticulturae 2025, Vol. 11, Page 759, v. 11, n. 7, p. 759, 1 jul. 2025.
DASGUPTA, Abhijit; DE, Rajat K. Artificial intelligence in systems biology. Handbook of Statistics, v. 49, p. 153–201, 1 jan. 2023.
DE FREITAS, Sergio Tonetto et al. Mango dry matter content at harvest to achieve high consumer quality of different cultivars in different growing seasons. Postharvest Biology and Technology, v. 189, p. 111917, 1 jul. 2022.
DIAZ, Daniel J. et al. Using machine learning to predict the effects and consequences of mutations in proteins. Current Opinion in Structural Biology, v. 78, p. 102518, fev. 2023.
DINIZ, W. J. S.; CANDURI, F. REVIEW-ARTICLE Bioinformatics: an overview and its applications. Genetics and Molecular Research, v. 16, n. 1, 2017.
GOODFELLOW, Ian; BENGIO, Yoshua; COURVILLE, Aaron. Deep Learning. [S.d.].
GUERRA, Abraham. Human associated Archaea: a neglected microbiome worth investigating. World Journal of Microbiology and Biotechnology, v. 40, n. 2, p. 1–13, 1 fev. 2024.
HAMID JAMIALAHMADI et al. Artificial Intelligence and Bioinformatics: A Journey from Traditional Techniques to Smart Approaches. Gastroenterology and Hepatology from Bed to Bench, v. 17, n. 3, 2024.
HOOD, Leroy; ROWEN, Lee. The human genome project: big science transforms biology and medicine. Genome Medicine, v. 5, n. 9, p. 79, 2013.
HOU, Minghua et al. Protein Multiple Conformation Prediction Using Multi-Objective Evolution Algorithm. Interdisciplinary Sciences - Computational Life Sciences, v. 16, n. 3, p. 519–531, 1 set. 2024.
HSU, Jason C.; LU, Christine Y.; HSU, Min Huei. Editorial: Artificial intelligence in infectious diseases: pathogenesis and therapy. Frontiers in Medicine, v. 11, p. 1414056, 14 maio 2024.
HUANG, Chujun et al. Fusion models for detection of soluble solids content in mandarin by Vis/NIR transmission spectroscopy combined external factors. Infrared Physics & Technology, v. 124, p. 104233, 1 ago. 2022.
JANIESCH, Christian; ZSCHECH, Patrick; HEINRICH, Kai. Machine learning and deep learning. Electronic Markets, v. 31, n. 3, p. 685–695, 8 set. 2021.
JUMPER, John et al. Highly accurate protein structure prediction with AlphaFold. Nature, v. 596, n. 7873, p. 583–589, 26 ago. 2021.
KANNAN, Meera et al. Leveraging public AI tools to explore systems biology resources in mathematical modeling. npj Systems Biology and Applications, v. 11, n. 1, p. 1–8, 1 dez. 2025.
KIM, Sang Yeon et al. Neural Network Based Prediction of Soluble Solids Concentrationin Oriental Melon Using VIS/NIR Spectroscopy. Applied Engineering in Agriculture, v. 37, n. 4, p. 653–663, 2021.
KITANO, Hiroaki. Systems Biology Powered by Artificial Intelligence. p. 1–1, 2012.
KO, Kuang Ting et al. Structure of the malaria vaccine candidate Pfs48/45 and its recognition by transmission blocking antibodies. Nature Communications, v. 13, n. 1, p. 1–11, 1 dez. 2022.
LIU, Wei et al. Structure-guided discovery and rational design of a new poly(ethylene terephthalate) hydrolase from AlphaFold protein structure database. Journal of Hazardous Materials, v. 480, p. 136389, 5 dez. 2024.
LU, Zhaohui et al. Nondestructive Testing of Pear Based on Fourier Near-Infrared Spectroscopy. Foods 2022, Vol. 11, Page 1076, v. 11, n. 8, p. 1076, 8 abr. 2022.
MA, Lifei et al. Comprehensive analyses of bioinformatics applications in the fight against COVID-19 pandemic. Computational Biology and Chemistry, v. 95, p. 107599, dez. 2021.
MCMAHON, Jack et al. A novel framework for the automated characterization of Gram-stained blood culture slides using a large-scale vision transformer. Journal of Clinical Microbiology, v. 63, n. 3, 12 mar. 2025.
MITRA, Debasis et al. Evolution of bioinformatics and its impact on modern bio-science in the twenty-first century: Special attention to pharmacology, plant science and drug discovery. Computational Toxicology, v. 24, p. 100248, nov. 2022.
MURRAY, Christopher J. L. et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet, v. 399, n. 10325, p. 629–655, fev. 2022a.
MURRAY, Christopher JL et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet (London, England), v. 399, n. 10325, p. 629–655, 12 fev. 2022b.
NADDAF, Miryam. 40 million deaths by 2050: toll of drug-resistant infections to rise by 70. Nature, v. 633, n. 8031, p. 747–748, 1 set. 2024.
POPLIN, Ryan et al. A universal snp and small-indel variant caller using deep neural networks. Nature Biotechnology, v. 36, n. 10, p. 983, 1 nov. 2018.
POURDARBANI, Razieh et al. Using metaheuristic algorithms to improve the estimation of acidity in Fuji apples using NIR spectroscopy. Ain Shams Engineering Journal, v. 13, n. 6, p. 101776, 1 nov. 2022.
RABBANI, Bahareh; TEKIN, Mustafa; MAHDIEH, Nejat. The promise of whole-exome sequencing in medical genetics. Journal of Human Genetics, v. 59, n. 1, p. 5–15, 7 jan. 2014.
RAHIMI, Mehdi et al. A toolset for the solid-state NMR-based 3D structure calculation of proteins. Journal of Magnetic Resonance, v. 339, p. 107214, 1 jun. 2022.
REHMAN, Ashfaq Ur et al. Role of artificial intelligence in revolutionizing drug discovery. Fundamental Research, v. 5, n. 3, p. 1273–1287, 1 maio 2025.
SAWYER, Abigail; FREE, Tristan; MARTIN, Joseph. Metagenomics: Preventing Future Pandemics. BioTechniques, v. 70, n. 1, p. 1–4, 15 jan. 2021.
SAYERS, Eric W. et al. GenBank. Nucleic Acids Research, v. 49, n. D1, p. D92–D96, 8 jan. 2021.
SCALISI, Alessio; O’CONNELL, Mark Glenn. Application of visible/NIR spectroscopy for the estimation of soluble solids, dry matter and flesh firmness in stone fruits. Journal of the Science of Food and Agriculture, v. 101, n. 5, p. 2100–2107, 30 mar. 2021.
SEVEN, İsmet et al. Predicting hepatocellular carcinoma survival with artificial intelligence. Scientific Reports, v. 15, n. 1, p. 1–14, 1 dez. 2025.
SMYTH, M. S.; MARTIN, J. H. J. x ray crystallography. Molecular pathology : MP, v. 53, n. 1, p. 8–14, 2000.
SPANG, Anja; OFFRE, Pierre. Towards a systematic understanding of differences between archaeal and bacterial diversity. Environmental microbiology reports, v. 11, n. 1, p. 9–12, 1 fev. 2019.
SRIPAURYA, Tanachart et al. Gros Michel banana soluble solids content evaluation and maturity classification using a developed portable 6 channel NIR device measurement. Measurement, v. 173, p. 108615, 1 mar. 2021.
SUBEDI, Phul P.; WALSH, Kerry B. Assessment of avocado fruit dry matter content using portable near infrared spectroscopy: Method and instrumentation optimisation. Postharvest Biology and Technology, v. 161, p. 111078, 1 mar. 2020.
TORRES, Marcelo D. T.; WAN, Fangping; DE LA FUENTE-NUNEZ, Cesar. Deep learning reveals antibiotics in the archaeal proteome. Nature Microbiology, v. 10, n. 9, p. 2153–2167, 1 set. 2025.
TORRINGTON, Ebony. Bioinformaticians: the Hidden Heroes of the COVID-19 Pandemic. BioTechniques, v. 72, n. 5, p. 171–174, 5 maio 2022.
UESAKA, Kazuma et al. Bioinformatics in bioscience and bioengineering: Recent advances, applications, and perspectives. Journal of Bioscience and Bioengineering, v. 134, n. 5, p. 363–373, nov. 2022.
VAN DEN BOGERT, Bartholomeus et al. On the Role of Bioinformatics and Data Science in Industrial Microbiome Applications. Frontiers in Genetics, v. 10, 9 ago. 2019.
VARADI, Mihaly et al. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Research, v. 50, n. D1, p. D439–D444, 7 jan. 2022.
XIA, Xuhua. Bioinformatics and Drug Discovery. Current Topics in Medicinal Chemistry, v. 17, n. 15, p. 1709–1726, 26 abr. 2017.
YANG, Zhenyu et al. AlphaFold2 and its applications in the fields of biology and medicine. Signal Transduction and Targeted Therapy, v. 8, n. 1, p. 1–14, 1 dez. 2023.
ZHANG, Shujun et al. The role and application of bioinformatics techniques and tools in drug discovery. Frontiers in Pharmacology, v. 16, 13 fev. 2025.
ZHOU, Hongyi; ASTORE, Courtney; SKOLNICK, Jeffrey. PHEVIR: an artificial intelligence algorithm that predicts the molecular role of pathogens in complex human diseases. Scientific Reports, v. 12, n. 1, p. 1–14, 1 dez. 2022.
ZHU, Yicheng; ONG, Cheng Soon; HUTTLEY, Gavin A. Machine Learning Techniques for Classifying the Mutagenic Origins of Point Mutations. Genetics, v. 215, n. 1, p. 25–40, 1 maio 2020.
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2025 Abraham Guerra, Nilo Ricardo Corrêa de Mello Júnior, Anderson Manares-Romero, Luzia Micaele Alves Barbosa (Autor)

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.