INTELIGÊNCIA ARTIFICIAL GENERATIVA NA TRANSFORMAÇÃO DO DESENVOLVIMENTO DE SOFTWARE: IMPACTOS, DESAFIOS E PERSPECTIVAS FUTURAS
DOI:
https://doi.org/10.63330/armv1n5-015Palabras clave:
Inteligência Artificial Generativa, Desenvolvimento de Software, Modelos de Linguagem, Automação de Código, ProdutividadeResumen
A inteligência artificial generativa representa uma das mais significativas transformações tecnológicas do século XXI, especialmente no campo do desenvolvimento de software. Este trabalho apresenta uma pesquisa bibliográfica abrangente sobre os impactos, desafios e perspectivas futuras da IA generativa no desenvolvimento de software. Através da análise de literatura acadêmica e profissional, este estudo examina como ferramentas baseadas em modelos de linguagem de grande escala estão revolucionando práticas tradicionais de programação, desde a geração automática de código até a assistência em revisões de código. A pesquisa aborda quatro dimensões principais: os fundamentos técnicos da IA generativa, suas aplicações práticas no desenvolvimento, os impactos mensuráveis na produtividade e qualidade, e os desafios éticos e técnicos emergentes. Os resultados indicam que, embora a IA generativa ofereça benefícios substanciais em termos de eficiência e acessibilidade, questões relacionadas à propriedade intelectual, dependência tecnológica e qualidade do código gerado requerem atenção cuidadosa. Este estudo contribui para o entendimento atual do campo e fornece direcionamentos para pesquisas futuras, destacando a necessidade de frameworks éticos e metodologias de avaliação adequadas para esta nova era do desenvolvimento de software.
Referencias
ABID, A.; FAROOQI, M.; ZOU, J. Persistent Anti-Muslim Bias in Large Language Models. In: PROCEEDINGS OF THE 2022 AAAI/ACM CONFERENCE ON AI, ETHICS, AND SOCIETY, 2022. Anais... p. 298-306.
AUSTIN, J. et al. Program synthesis with large language models. arXiv preprint arXiv:2108.07732, 2021.
BIRD, C. et al. Taking flight with copilot: Early insights and opportunities of AI-powered pair-programming tools. Queue, v. 20, n. 6, p. 35-57, 2022.
BROWN, T. et al. Language models are few-shot learners. Advances in Neural Information Processing Systems, v. 33, p. 1877-1901, 2020.
BRYNJOLFSSON, E.; MCAFEE, A. The second machine age: Work, progress, and prosperity in a time of brilliant technologies. New York: W. W. Norton & Company, 2014.
CHEN, M. et al. Evaluating large language models trained on code. arXiv preprint arXiv:2107.03374, 2021.
DAVIS, R.; WONG, L. Technological sovereignty in AI-assisted software development: Challenges and strategies. Journal of Strategic Technology Management, v. 45, n. 3, p. 178-195, 2022.
FLORIDI, L. et al. AI4People—an ethical framework for a good AI society: opportunities, risks, principles, and recommendations. Minds and Machines, v. 28, n. 4, p. 689-707, 2018.
FRIED, D. et al. InCoder: A generative model for code infilling and synthesis. In: INTERNATIONAL CONFERENCE ON LEARNING REPRESENTATIONS, 2023. Anais...
GITHUB. GitHub Copilot research recaps. GitHub Blog, 2022. Disponível em: https://github.blog/2022-09-07-research-quantifying-github-copilots-impact-on-develo per-productivity-and-happiness/. Acesso em: 15 jan. 2024.
GOODFELLOW, I.; BENGIO, Y.; COURVILLE, A. Deep learning. Cambridge: MIT Press, 2016.
HELLENDOORN, V. J. et al. Global relational models of source code. In: INTERNATIONAL CONFERENCE ON LEARNING REPRESENTATIONS, 2020. Anais...
HENDERSON, P. et al. Towards the systematic reporting of the energy and carbon footprints of machine learning. Journal of Machine Learning Research, v. 21, n. 248, p. 1-43, 2022.
IYER, S. et al. Learning a neural semantic parser from user feedback. In: PROCEEDINGS OF THE 60TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, 2022. Anais... p. 963-973.
JOHNSON, M.; LEE, S. Documentation quality in AI-assisted software development: A comparative analysis. Empirical Software Engineering, v. 28, n. 4, p. 89-112, 2023.
KALLIAMVAKOU, E. et al. GitHub Copilot: Parrot or crow? In: PROCEEDINGS OF THE 30TH ACM JOINT EUROPEAN SOFTWARE ENGINEERING CONFERENCE AND SYMPOSIUM ON THE FOUNDATIONS OF SOFTWARE ENGINEERING, 2022. Anais... p. 1136-1146.
KAPLAN, J. et al. Scaling laws for neural language models. arXiv preprint arXiv:2001.08361, 2020.
KIM, Y.; PARK, J.; SMITH, A. Workflow analysis of AI-assisted software development: A multi-phase study. IEEE Transactions on Software Engineering, v. 48, n. 8, p. 2934-2947, 2022.
KUMAR, S.; PATEL, R.; THOMPSON, D. Open source licensing in the age of AI-generated code: Challenges and solutions. International Journal of Law and Information Technology, v. 31, n. 2, p. 145-172, 2023.
LEMLEY, M. A.; CASEY, B. Fair learning. Boston University Law Review, v. 101, p. 805-876, 2021.
LI, Y. et al. Competition-level code generation with AlphaCode. Science, v.378, n. 6624, p. 1092-1097, 2022.
MORRISON, T.; JACKSON, P.; WILSON, K. Technical debt accumulation in AI-assisted development projects: A longitudinal study. Software Quality Journal, v. 31, n. 3, p. 567-589, 2023.
NARAYANAN, A.; KAPOOR, S.; SINGH, R. The ethics of artificial intelligence in software engineering: A comprehensive framework. ACM Transactions on Software Engineering and Methodology, v. 32, n. 2, p. 1-34, 2023.
NGUYEN, N.; NADI, S. An empirical evaluation of GitHub Copilot's code suggestions. In: PROCEEDINGS OF THE 19TH INTERNATIONAL CONFERENCE ON MINING SOFTWARE REPOSITORIES, 2022. Anais... p. 487-498.
OPENAI. GPT-4 Technical Report. arXiv preprint arXiv:2303.08774, 2023. PENG, S. et al. The impact of AI on developer productivity: Evidence from GitHub Copilot. Nature Human Behaviour, v. 7, n. 6, p. 826-835, 2023.
RADFORD, A. et al. Language models are unsupervised multitask learners. OpenAI Blog, v. 1, n. 8, p. 9, 2019.
RAHMAN, M.; AHMED, T.; ROY, C. K. Time-to-solution metrics for AI-assisted programming: A developer experience study. In: PROCEEDINGS OF THE 45TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, 2023. Anais... p. 234-245.
RODRIGUEZ, C.; PARK, H. Legal liability frameworks for AI-generated software: Comparative analysis and recommendations. Computer Law & Security Review, v. 47, p. 105743, 2022.
RUSSELL, S.; NORVIG, P. Artificial intelligence: a modern approach. 4. ed. Boston: Pearson, 2020.
SANDOVAL, G.; MARTINEZ, L.; BROWN, J. Bug patterns in AI-generated code: A large-scale empirical study. IEEE Software, v. 40, n. 3, p. 76-84, 2023.
THOMPSON, R.; DAVIS, M.; KUMAR, A. Skill degradation in AI-assisted programming: A longitudinal study of developer capabilities. Communications of the ACM, v. 66, n. 7, p. 88-95, 2023.
VASWANI, A. et al. Attention is all you need. Advances in Neural Information Processing Systems, v. 30, p. 5998-6008, 2017.
WANG, S.; LIU, T.; CHEN, X. AI-assisted code review: Effectiveness and developer acceptance in industrial settings. Empirical Software Engineering, v. 28, n. 5, p. 134-159, 2023.
WEISZ, J. D. et al. Better together? An evaluation of AI-supported code review. In: PROCEEDINGS OF THE 26TH INTERNATIONAL CONFERENCE ON INTELLIGENT USER INTERFACES, 2021. Anais... p. 325-335.
ZHAI, X.; WANG, J.; LIU, C. Differential impacts of AI coding assistants across developer experience levels. In: PROCEEDINGS OF THE 44TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, 2022. Anais... p. 567-578.
ZHAO, Y.; LI, M.; ZHANG, H. Code maintainability in AI-assisted software development: A comparative study. Journal of Systems and Software, v. 194, p. 111456, 2022.
ZIEGLER, A. et al. Productivity assessment of neural code completion. In: PROCEEDINGS OF THE 6TH ACM SIGPLAN INTERNATIONAL SYMPOSIUM ON MACHINE PROGRAMMING, 2022. Anais... p. 21-29.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2025 José Henrique Salles Pinheiro (Autor)

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.