INTEGRANDO ROBÓTICA EDUCACIONAL E AGRICULTURA 4.0 COMO SOLUÇÃO PARA OS DESAFIOS DO ENSINO DE CIÊNCIAS FÍSICAS
DOI:
https://doi.org/10.63330/armv1n10-011Palavras-chave:
Robótica Educacional, Agricultura 4.0, Ensino de Física, STEM, Framework Teórico, Habilidades de Ordem SuperiorResumo
O ensino de Ciências Física enfrenta desafios persistentes, notadamente a descontextualização e a baixa motivação dos estudantes, o que se soma à crescente e crítica escassez de capital humano qualificado para as demandas da Quarta Revolução Industrial, em particular no setor da Agricultura 4.0 (A4.0). Este ensaio teórico propõe e defende um Framework Teórico Sinergético (FTS) como resposta a essa dupla problemática, fundamentado em uma revisão rigorosa da literatura em Robótica Educacional (RE), Ensino de Física e Tecnologias da A4.0. O FTS articula intencionalmente o uso da RE, metodologia ativa que transforma conceitos teóricos em problemas de engenharia solucionáveis, com o ambiente autêntico e relevante da A4.0. O modelo sustenta que a aplicação de princípios da Física em desafios como otimização de sensores e controle de sistemas robóticos agrícolas, eleva a relevância percebida da disciplina. A análise teórica indica que o FTS atua como um potente catalisador para o desenvolvimento de Habilidades de Ordem Superior (HOTS), como o raciocínio sistêmico, a construção de modelos e o pensamento crítico, que são essenciais tanto para a proficiência científica quanto para a inovação tecnológica. Conclui-se que o FTS oferece um roteiro conceitual robusto para a modernização curricular e para a formação de uma força de trabalho apta a impulsionar o desenvolvimento sustentável e digital do agronegócio, cumprindo uma função social e pedagógica fundamental.
Referências
[1] DANCY, M.; HENDERSON, C. Pedagogical practices and instructional change of physics faculty. American Journal of Physics, v. 78, n. 10, p. 1056–1063, 1 out. 2010.
[2] SELLAMI, A.; AMMAR, M.; AHMAD, Z. Exploring Teachers’ Perceptions of the Barriers to Teaching STEM in High Schools in Qatar. Sustainability 2022, Vol. 14, Page 15192, v. 14, n. 22, p. 15192, 16 nov. 2022.
[3] BAPTISTA, A. D. C.; SIQUEIRA, M. R. DA P. Implementação da Mecatrônica no ensino de Física: construção de ações investigativas através dos Dispositivos Mecatrônicos Educacionais. Caderno Brasileiro de Ensino de Física, v. 35, n. 2, p. 550–572, 14 set. 2018.
[4] DOCKTOR, J. L.; MESTRE, J. P. Synthesis of discipline-based education research in physics. Physical Review Special Topics - Physics Education Research, v. 10, n. 2, 16 set. 2014.
[5] THIAGARAJAH, S. P. et al. Effectiveness of an Internet of Things-based smart farming workshop model for enhancing science, technology, mathematics, and engineering awareness and seeding. IEEE Potentials, 2024.
[6] LAKSHMINARAYANAN, V.; MCBRIDE, A. C. The use of high technology in STEM education. SPIE-INT SOC OPTICAL ENGINEERING. Anais...SPIE-INT SOC OPTICAL ENGINEERING, 8 out. 2015.
[7] ZANG, S. et al. Mediation mechanisms in the hierarchical evolution of high-order thinking skills: A longitudinal study in Chinese science education. Thinking Skills and Creativity, v. 59, p. 101996, 1 mar. 2026.
[8] PEDRERA, O.; BARRUTIA, O.; DÍEZ, J. R. Unveiling Students’ Mental Models and Learning Demands: an Empirical Validation of Secondary Students’ Model Progression on Plant Nutrition. Research in Science Education, 1 out. 2025.
[9] GA, S. H. et al. Science Teachers’ Technical Difficulties in Using Physical Computing and the Internet of Things into School Science Inquiry. IEEE Transactions on Learning Technologies, v. 17, p. 1849–1858, 2024.
[10] COSTAN, E. et al. Education 4.0 in Developing Economies: A Systematic Literature Review of Implementation Barriers and Future Research Agenda. Sustainability 2021, Vol. 13, Page 12763, v. 13, n. 22, p. 12763, 18 nov. 2021.
[11] FASCIOLO, B.; PANZA, L.; LOMBARDI, F. Exploring the Integration of Industry 4.0 Technologies in Agriculture: A Comprehensive Bibliometric Review. Sustainability 2024, Vol. 16, Page 8948, v. 16, n. 20, p. 8948, 16 out. 2024.
[12] LATINO, M. E. et al. Agriculture 4.0 as Enabler of Sustainable Agri-Food: A Proposed Taxonomy. IEEE Transactions on Engineering Management, v. 70, n. 10, p. 3678–3696, 1 out. 2023.
[13] LOUTA, M.; BANTI, K.; KARAMPELIA, I. Emerging Technologies for Sustainable Agriculture: The Power of Humans and the Way Ahead. IEEE Access, v. 12, p. 98492–98529, 2024.
[14] ZANG, S. et al. Formative assessment on the upward spiral patterns of students’ high-order abilities under knowledge integration instruction. Thinking Skills and Creativity, v. 58, p. 101885, 1 dez. 2025.
[15] FRANCIS, C. A. et al. Challenges in designing ecological agriculture education: A Nordic perspective on change. Renewable Agriculture and Food Systems, v. 16, n. 2, p. 89–95, 1 jun. 2001.
[16] HENDERSON, C.; DANCY, M. H. Impact of physics education research on the teaching of introductory quantitative physics in the United States. Physical Review Special Topics - Physics Education Research, v. 5, n. 2, 11 dez. 2009.
[17] ASLAM, S. et al. Challenges in Implementing STEM Education: Insights from Novice STEM Teachers in Developing Countries. Sustainability (Switzerland), v. 15, n. 19, 1 out. 2023.
[18] HETTINGER, K.; LAZARIDES, R.; SCHIEFELE, U. Motivational climate in mathematics classrooms: teacher self-efficacy for student engagement, student- and teacher-reported emotional support and student interest. ZDM - Mathematics Education, v. 55, n. 2, p. 413–426, 1 mar. 2023.
[19] BAZELAIS, P.; LEMAY, D. J.; DOLECK, T. Examining the Link Between Prior Achievement in Secondary Education and Performance in College: Using Data from Pre-university Physics Courses. Journal of Formative Design in Learning, v. 2, n. 2, p. 114–120, dez. 2018.
[20] CAMPOS, F. M. Ardosia: Simulating Circuits and Robotic Systems in a Single Learning Platform. IEEE Transactions on Learning Technologies, v. 16, n. 2, p. 166–177, 1 abr. 2023.
[21] KAPICI, H. O. Does inquiry-based learning work better in regular classrooms or computer-based settings? Instructional Science 2025 53:4, v. 53, n. 4, p. 705–728, 26 abr. 2025.
[22] JOVENTINO, C. F. et al. A Sim-to-real Practical Approach to Teach Robotics into K-12: A Case Study of Simulators, Educational and DIY Robotics in Competition-based Learning. Journal of Intelligent & Robotic Systems, v. 107, n. 1, p. 14, 17 jan. 2023.
[23] CHATZICHRISTOFIS, S. A. Recent Advances in Educational Robotics. Electronics 2023, Vol. 12, Page 925, v. 12, n. 4, p. 925, 12 fev. 2023.
[24] FERRARELLI, P.; IOCCHI, L. Learning Newtonian Physics through Programming Robot Experiments. Technology, Knowledge and Learning, v. 26, n. 4, p. 789–824, 18 dez. 2021.
[25] BERNSTEIN, D. et al. Teaching with robotics: creating and implementing integrated units in middle school subjects. Journal of Research on Technology in Education, v. 54, n. 2, p. 161–176, 15 mar. 2022.
[26] NGUGI, M. P.; MAINA, M. C.; BYRNE, A. P. The Impact of Robotic Activities on Secondary School Students’ Interest in Physics in Kenya. International Journal of Computer Applications Technology and Research, v. 12, p. 53–59, 8 jan. 2023.
[27] PONCE, P. et al. Use of Robotic Platforms as a Tool to Support STEM and Physical Education in Developed Countries: A Descriptive Analysis. Sensors, v. 22, n. 3, p. 1037–1037, 28 jan. 2022.
[28] SILVA, F. T. DA et al. Open Innovation in Agribusiness: Barriers and Challenges in the Transition to Agriculture 4.0. Sustainability, v. 15, n. 11, p. 8562–8562, 25 maio 2023.
[29] DA SILVEIRA, F.; LERMEN, F. H.; AMARAL, F. G. An overview of agriculture 4.0 development: Systematic review of descriptions, technologies, barriers, advantages, and disadvantages. Computers and Electronics in Agriculture, v. 189, p. 106405, 1 out. 2021.
[30] EROL, M.; DEMIR, Y. Resolution of Light Transmission via Arduino-Based STEM Education Material. Jurnal Pendidikan Fisika Indonesia, v. 20, n. 2, p. 165–172, 4 dez. 2024.
[31] DERAKHTI, A.; SANTIBANEZ GONZALEZ, E. D. R.; MARDANI, A. Industry 4.0 and Beyond: A Review of the Literature on the Challenges and Barriers Facing the Agri-Food Supply Chain. Sustainability, v. 15, n. 6, p. 5078–5078, 13 mar. 2023.
[32] FRAGOMELI, R.; ANNUNZIATA, A.; PUNZO, G. Promoting the Transition towards Agriculture 4.0: A Systematic Literature Review on Drivers and Barriers. Sustainability (Switzerland) , v. 16, n. 6, p. 2425, 1 mar. 2024.
[33] DA SILVEIRA, F. et al. Proposal for a framework to manage the barriers that hinder the development of agriculture 4.0 in the agricultural production chain. Computers and Electronics in Agriculture, v. 214, p. 108281, 1 nov. 2023.
[34] LI, Q. et al. The influence of teaching motivations on student engagement in an online learning environment in China. Australasian Journal of Educational Technology, v. 38, n. 6, 2022.
[35] LOUKATOS, D.; GLYKOS, I.; ARVANITIS, K. G. Communicating the Automatic Control Principles in Smart Agriculture Education: The Interactive Water Pump Example. Robotics 2025, Vol. 14, Page 68, v. 14, n. 6, p. 68, 26 maio 2025.
[36] VALLERA, F. L.; BODZIN, A. M. Integrating STEM with AgLIT (Agricultural Literacy Through Innovative Technology): The Efficacy of a Project-Based Curriculum for Upper-Primary Students. International Journal of Science and Mathematics Education, v. 18, n. 3, p. 419–439, 1 mar. 2020.
[37] DE CRISTOFORIS, P. et al. A Behavior-Based Approach for Educational Robotics Activities. IEEE Transactions on Education, v. 56, n. 1, p. 61–66, fev. 2013.
[38] LOTRIET, H. H.; GOUWS, P. M. Educational robotics in physics education: a systematic review. Studies in Science Education, p. 1–30, 24 jan. 2025.
[39] RETHLEFSEN, M. L. et al. PRISMA-S: an extension to the PRISMA Statement for Reporting Literature Searches in Systematic Reviews. Systematic Reviews, v. 10, n. 1, p. 1–19, 26 jan. 2021.
[40] AMARAL, L. A.; BELICH, H. Kleinberg’s Navigation in Fractal Small-World Networks by Dynamic Rejection Sampling. Brazilian Journal of Physics 2021 51:6, v. 51, n. 6, p. 1858–1866, 9 out. 2021.
[41] BAUMEISTER, R. F.; LEARY, M. R. Writing narrative literature reviews. Review of General Psychology, v. 1, n. 3, p. 311–320, 1 set. 1997.
[42] HEMMELGARN, H. et al. Agroforestry education for high school agriculture science: an evaluation of novel content adoption following educator professional development programs. Agroforestry Systems, v. 93, n. 5, p. 1659–1671, 15 out. 2019.
[43] KRAUS, S. et al. Literature reviews as independent studies: guidelines for academic practice. Review of Managerial Science, v. 16, n. 8, p. 2577–2595, 1 nov. 2022.
[44] FIORINI, P. Encouraging robotics to take root [teaching tool. IEEE Robotics & Automation Magazine, v. 12, n. 3, p. 15, set. 2005.
[45] BOYA-LARA, C. et al. Development of a course based on BEAM robots to enhance STEM learning in electrical, electronic, and mechanical domains. International Journal of Educational Technology in Higher Education, v. 19, n. 1, p. 7, 3 dez. 2022.
[46] BRUDER, S.; WEDEWARD, K. Robotics in the classroom. IEEE Robotics & Automation Magazine, v. 10, n. 3, p. 25–29, set. 2003.
[47] HONG, J.-C. et al. Developing physics concepts through hands-on problem solving: a perspective on a technological project design. International Journal of Technology and Design Education, v. 22, n. 4, p. 473–487, 31 nov. 2012.
[48] HSIAO, H.-S. et al. Using robot-based practices to develop an activity that incorporated the 6E model to improve elementary school students’ learning performances. Interactive Learning Environments, v. 30, n. 1, p. 85–99, 2 jan. 2022.
[49] COMILLO, R. B.; MISTADES, V. M. IMPACT OF BRAIN-BASED TEACHING ON THE CONCEPTUAL UNDERSTANDING OF NEWTON’S LAWS OF MOTION. Jurnal Pendidikan IPA Indonesia, v. 14, n. 2, p. 216–228, 1 jun. 2025.
[50] ORLANDO, S.; GAUDIOSO, E.; DE LA PAZ, F. Toward Embedding Robotics in Learning Environments With Support to Teachers: The IDEE Experience. IEEE Transactions on Learning Technologies, v. 17, p. 874–884, 2024.
Downloads
Publicado
Edição
Seção
Licença

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.