OXYGEN THERAPY IN HOSPITALIZED ADULTS: STATE OF THE ART

Authors

  • Caio Henrique Veloso da Costa Autor
  • Daniel Lago Borges Autor
  • Angelo Roncalli Miranda Rocha Autor

DOI:

https://doi.org/10.63330/armv1n8-008

Keywords:

Oxygen, Oxygen inhalation therapy, Oxygen saturation, Hyperoxia, Hypoxia

Abstract

Introduction: Oxygen therapy is one of the most fundamental and widely used medical interventions in hospital practice, ranging from primary care to complex intensive care units. Despite its apparent simplicity, oxygen represents a drug with a narrow therapeutic index, capable of causing both life-saving benefits and significant harm when mismanaged. In recent decades, robust scientific evidence has demonstrated the risks of iatrogenic hyperoxia, establishing the need for conservative and precise approaches. However, an alarming gap persists between established scientific knowledge and daily clinical practice, revealing systemic flaws that compromise patient safety and the efficiency of healthcare resources. Objective: To conduct a critical and multidimensional analysis of the state of the art of oxygen therapy in hospitalized adults, investigating its historical evolution, scientific foundations, available technologies, and the barriers that impede the translation of knowledge into safe clinical practice. Methods: Integrative review conducted through a systematic search of PubMed, EMBASE, Cochrane Library, and Scopus, with no time restriction. Randomized clinical trials, systematic reviews, meta-analyses, and guidelines from international medical societies focused on hospitalized adults were included. The analysis integrated historical sources, contemporary scientific evidence, and technological developments. Results: There is robust evidence demonstrating that conservative strategies reduce mortality compared to liberal approaches. Paradoxically, a critical gap persists between evidence and practice: only 40% of hospitals adhere to appropriate protocols. The technological analysis revealed that analog flowmeters exhibit deviations of up to 30% at high flows, constituting a fundamental barrier to guideline implementation. Digital flowmeters demonstrate accuracy of <1.5%, with a return on investment of 18–24 months and potential cost savings. Emerging technologies include high-flow nasal cannulas, automatic titration systems, and artificial intelligence for predictive medicine. Conclusions: There is a solid scientific consensus on conservative oxygen therapy, but implementation is hampered by outdated technology and a culture of complacency. Modernization to digital flowmeters and the implementation of oxygen stewardship programs are urgent imperatives to transform oxygen therapy from an imprecise art into a rigorous pharmacological science, ensuring patient safety and health system sustainability.

References

1. World Health Organization. Clinical care of severe acute respiratory infections: toolkit. Geneva: WHO; 2020.

2. Rello J, Storti E, Appolloni O, et al. Triage of patients with acute respiratory failure in the ED. Am J Emerg Med. 2013;31(1):181-185.

3. Bitterman H. Bench-to-bedside review: oxygen as a drug. Crit Care. 2009;13(1):205.

4. Helmerhorst HJF, Schultz MJ, van der Sluijs JP, et al. The effects of hyperoxia in critically ill patients: a systematic review and meta-analysis. Crit Care Med. 2017;45(5):e561-e569.

5. Leach RM, Davidson AC. The history of oxygen therapy. Respir Med. 1998;92(1):1-5.

6. Vincent JL, Taccone FS, He X. Harmful effects of hyperoxia in postcardiac arrest, sepsis, and traumatic brain injury: a literature review. Crit Care. 2017;21(1):126.

7. Siemieniuk RAC, Chu DK, Kim LH, et al. Oxygen therapy for acutely ill medical patients: a clinical practice guideline. BMJ. 2018;363:k4165.

8. Chu DK, Kim LH, Young PJ, et al. Mortality and morbidity in acutely ill adults treated with liberal versus conservative oxygen therapy (IOTA): a systematic review and meta-analysis. Lancet. 2018;391(10131):1693-1705.

9. Hale KE, Gavin C, O'Driscoll BR. Audit of oxygen use in emergency ambulances and in a hospital emergency department. Emerg Med J. 2008;25(11):773-6.

10. Eastwood GM, O'Connell B, Gardner A, Considine J. Nurses' knowledge of oxygen therapy: a literature review. Aust Crit Care. 2009;22(3):117-29.

11. Kane B, Decalmer S, O'Driscoll BR. Emergency oxygen therapy: from guideline to implementation. Breathe (Sheff). 2013;9(4):246-253.

12. Priestley J. Experiments and Observations on Different Kinds of Air. London: J. Johnson; 1774.

13. Lavoisier AL. Mémoire sur la nature du principe qui se combine avec les métaux pendant leur calcination et qui en augmente le poids. Mém Acad R Sci. 1775;520-526.

14. Chaptal JA. Éléments de chimie. 3rd ed. Montpellier: Jean Martel; 1790.

15. Holtzapple GE. The use of oxygen in pneumonia. JAMA. 1887;IX(15):449-452.

16. Bernard C. Leçons sur les phénomènes de la vie communs aux animaux et aux végétaux. Paris: J.B. Baillière et fils; 1859.

17. Bert P. La Pression Barométrique: Recherches de Physiologie Expérimentale. Paris: Masson; 1878.

18. Smith JL. The pathological effects due to increase of oxygen tension in the air breathed. J Physiol. 1899;24(1):19-35.

19. Bohr C, Hasselbalch K, Krogh A. Ueber einen in biologischer Beziehung wichtigen Einfluss, den die Kohlensäurespannung des Blutes auf dessen Sauerstoffbindung übt. Skand Arch Physiol. 1904;16:402-412.

20. West JB. Pulmonary Pathophysiology: The Essentials. 9th ed. Philadelphia, PA: Wolters Kluwer; 2016.

21. Campbell EJM. A method of controlled oxygen administration which reduces the risk of carbon-dioxide retention. Lancet. 1960;2(7162):12-14.

22. Silverman WA. A cautionary tale about supplemental oxygen. Pediatrics. 2004;113(2):394-6.

23. Aoyagi T, Kishi M, Yamaguchi K, Watanabe S. Improvement of an earpiece oximeter. In: Abstracts of the 13th Annual Meeting of the Japanese Society for Medical Electronics and Biological Engineering. 1974. p. 90-91.

24. Nocturnal Oxygen Therapy Trial Group. Continuous or nocturnal oxygen therapy in hypoxemic chronic obstructive lung disease: a clinical trial. Ann Intern Med. 1980;93(3):391-8.

25. Medical Research Council Working Party. Long term domiciliary oxygen therapy in chronic hypoxic cor pulmonale complicating chronic bronchitis and emphysema. Lancet. 1981;1(8222):681-6.

26. O'Driscoll BR, Howard LS, Earis J, Mak V. BTS guideline for oxygen use in adults in healthcare and emergency settings. Thorax. 2017;72(Suppl 1):ii1-ii90.

27. ICU-ROX Investigators and the Australian and New Zealand Intensive Care Society Clinical Trials Group. Conservative oxygen therapy during mechanical ventilation in the ICU. N Engl J Med. 2020;382(11):989-998.

28. Girardis M, Busani S, Damiani E, et al. Effect of conservative vs conventional oxygen therapy on mortality among patients in an intensive care unit: the oxygen-ICU randomized clinical trial. JAMA. 2016;316(15):1583-1589.

29. West JB. Joseph Priestley, oxygen, and the enlightenment. Am J Physiol Lung Cell Mol Physiol. 2014;306(2):L111-119.

30. Hardavella G, Karampinis I, Frille A, et al. Oxygen devices and delivery systems. Breathe. 2019;15:e108-e116.

31. Frat JP, Thille AW, Mercat A, et al. High-flow oxygen through nasal cannula in acute hypoxemic respiratory failure. N Engl J Med. 2015;372(23):2185-96.

32. Maggiore SM, Idone FA, Vaschetto R, et al. Nasal high-flow versus Venturi mask oxygen therapy after extubation: effects on oxygenation, comfort, and clinical outcome. Am J Respir Crit Care Med. 2014;190

33. Rochwerg B, Granton D, Wang DX, Helviz Y, Einav S, Frat JP, et al. High flow nasal cannula compared with conventional oxygen therapy for acute hypoxemic respiratory failure: a systematic review and meta-analysis. Intensive Care Med. 2019;45(5):563-72.

34. Bräunlich J, Goldner F, Wirtz H. Nasal highflow eliminates CO2 retention in patients with severe COPD and hypercapnia. Int J Chron Obstruct Pulmon Dis. 2018;13:2193-200.

35. Spoletini G, Alotaibi M, Blasi F, Hill NS. Heated humidified high-flow nasal oxygen in adults: mechanisms of action and clinical implications. Chest. 2015;148(1):253-61.

36. Mauri T, Turrini C, Eronia N, Grasselli G, Volta CA, Bellani G, et al. Physiologic effects of high-flow nasal cannula in acute hypoxemic respiratory failure. Am J Respir Crit Care Med. 2017;195(9):1207-15.

37. Pisani L, Fasulo R, Corcione N, Comellini V, Musti MA, Brandao M, et al. Change in pulmonary mechanics and the effect on breathing pattern of high flow oxygen therapy in stable hypercapnic COPD. Thorax. 2017;72(4):373-5.

38. L'Her E, Dias P, Gouillou M, Riou A, Souquiere L, Paleiron N, et al. Automatic versus manual oxygen administration in the emergency department. Eur Respir J. 2017;50(1):1602552.

39. Rice KL, Schmidt MF, Buan JS, Lebahn F, Schwarzock TK. AccuO2 oximetry-driven oxygen-conserving device versus fixed-dose oxygen devices in stable COPD patients. Respir Care. 2011;56(12):1901-5.

40. Lellouche F, Bouchard PA, Simard S, L'Her E, Wysocki M. Evaluation of fully automated ventilation: a randomized controlled trial in post-cardiac surgery patients. Intensive Care Med. 2013;39(3):463-71.

41. Kacmarek RM, Stoller JK, Heuer AJ, Chatburn RL, Kallet RH, Rajdev JA, et al. American Association for Respiratory Care Clinical Practice Guideline: oxygen therapy for adults in the acute care facility. Respir Care. 2020;65(12):1917-29.

42. Hardinge M, Annandale J, Bourne S, Cooper B, Evans A, Freeman D, et al. British Thoracic Society guidelines for home oxygen use in adults. Thorax. 2015;70 Suppl 1:i1-43.

43. Stéphan F, Barrucand B, Petit P, Rézaiguia-Delclaux S, Médard A, Delannoy B, et al. High-flow nasal oxygen vs noninvasive positive airway pressure in hypoxemic patients after cardiothoracic surgery: a randomized clinical trial. JAMA. 2015;313(23):2331-9.

44. Esquinas AM, Carron M, Cosentini R, Mauri T, Moderno EV, Pesenti A, et al. Noninvasive versus invasive mechanical ventilation in immunocompromised patients with hypoxemic acute respiratory failure: a systematic review and meta-analysis. Crit Care. 2016;20(1):324.

45. Bellani G, Laffey JG, Pham T, Fan E, Brochard L, Esteban A, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA. 2016;315(8):788-800.

46. European Respiratory Society Task Force. European Respiratory Society guidelines for the use of supplemental oxygen in adult patients. Eur Respir J. 2019;53(1):1801941.

47. Taniguchi H, Yoshida T, Fujino Y, Hashimoto H, Aguni M, Nakamura T, et al. Japanese Society of Intensive Care Medicine recommendations for oxygen therapy in critically ill patients. J Intensive Care. 2021;9(1):17.

48. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054-62.

49. Jardim JR, Oliveira JA, Nascimento O. II Consenso Brasileiro sobre Doença Pulmonar Obstrutiva Crônica - DPOC. J Bras Pneumol. 2004;30 Suppl 5:S1-42.

50. Asociación Latinoamericana del Tórax. ALAT Guidelines for oxygen therapy in acute and chronic respiratory failure. Arch Bronconeumol. 2020;56(8):492-501.

51. World Health Organization. Technical specifications for oxygen concentrators. Geneva: WHO; 2021.

52. WHO Global Health Observatory. Pulse oximetry training manual. Geneva: World Health Organization; 2021.

53. Helmerhorst HJF, Arts DL, Schultz MJ, van der Voort PH, Abu-Hanna A, de Jonge E, et al. Metrics of arterial hyperoxia and associated outcomes in critically ill patients. Crit Care Med. 2017;45(2):187-95.

54. Young PJ, Mackle D, Bellomo R, Bailey M, Beasley R, Deane A, et al. Conservative oxygen therapy for mechanically ventilated adults with sepsis: a post hoc analysis of data from the intensive care unit randomized trial comparing two approaches to oxygen therapy. Intensive Care Med. 2020;46(1):17-26.

55. Hofmann R, James SK, Jernberg T, Lindahl B, Erlinge D, Witt N, et al. Oxygen therapy in suspected acute myocardial infarction. N Engl J Med. 2017;377(13):1240-9.

56. Stub D, Smith K, Bernard S, Nehme Z, Stephenson M, Bray JE, et al. Air versus oxygen in ST-segment-elevation myocardial infarction. Circulation. 2015;131(24):2143-50.

57. Azoulay E, Lemiale V, Mokart D, Nseir S, Argaud L, Pène F, et al. Effect of high-flow nasal oxygen vs standard oxygen on 28-day mortality in immunocompromised patients with acute respiratory failure: the HIGH randomized clinical trial. JAMA. 2018;320(20):2099-107.

58. Barbateskovic M, Schjørring OL, Russo Krauss S, Jakobsen JC, Meyhoff CS, Dahl RM, et al. Higher versus lower fraction of inspired oxygen or targets of arterial oxygenation for adults admitted to the intensive care unit. Cochrane Database Syst Rev. 2019;2019(11):CD012631.

59. Palmer E, Post B, Klapaukh R, Mcelebration T, Chen L, Applefeld W, et al. The Association between Supraphysiologic Arterial Oxygen Levels and Mortality in Critically Ill Patients. A Multicenter Observational Cohort Study. Am J Respir Crit Care Med. 2019;200(11):1373-80.

60. Claure N, Bancalari E. Automated respiratory support in newborn infants. Semin Fetal Neonatal Med. 2007;12(6):517-24.

61. L'Her E, N'Guyen QT, Pateau V, Bodenes L, Lellouche F. Photoplethysmographic determination of the respiratory rate in acutely ill patients: validation of a new algorithm and implementation into a biomedical device. Ann Intensive Care. 2019;9(1):11.

62. Khanna AK, Hoppe P, Saugel B. Automated continuous noninvasive ward monitoring: future directions and challenges. Crit Care. 2019;23(1):194.

63. van Gent MN, Frerichs I, van Kaam AH. Real-time imaging of regional lung function in neonates using electrical impedance tomography. Pediatr Pulmonol. 2019;54(10):1542-52.

64. Bourenne J, Hraiech S, Roch A, Gainnier M, Papazian L, Forel JM. Sedation and neuromuscular blocking agents in acute respiratory distress syndrome. Ann Transl Med. 2017;5(14):291.

65. Pham T, Brochard LJ, Slutsky AS. Mechanical ventilation: state of the art. Mayo Clin Proc. 2017;92(9):1382-400.

Published

2025-10-24

How to Cite

OXYGEN THERAPY IN HOSPITALIZED ADULTS: STATE OF THE ART. (2025). Aurum Revista Multidisciplinar, 1(8), 106-122. https://doi.org/10.63330/armv1n8-008