GENERATIVE ARTIFICIAL INTELLIGENCE IN THE TRANSFORMATION OF SOFTWARE DEVELOPMENT PROCESSES: OPPORTUNITIES, CHALLENGES, AND IMPACTS ON PRODUCTIVITY
DOI:
https://doi.org/10.63330/armv1n5-016Keywords:
Generative Artificial Intelligence, Software Development, Productivity, Code Automation, Digital TransformationAbstract
Generative artificial intelligence has emerged as a disruptive technology in the field of software development, revolutionizing traditional programming practices and offering new possibilities to increase developer productivity. This article investigates the impact of generative AI tools, such as GitHub Copilot, ChatGPT, and CodeT5, on software development processes, analyzing their contributions to automating code generation, documentation, and testing. Through a systematic literature review and analysis of practical cases, the study examines opportunities for workflow optimization, technical and ethical challenges associated with adopting these technologies, and their effects on the quality of software produced. Results indicate that while generative AI demonstrates significant potential to increase developer productivity by up to 55% in specific tasks, its implementation presents challenges related to technological dependence, intellectual property issues, and the need to maintain fundamental technical competencies. The study concludes that effective integration of generative AI in software development requires a balanced approach that maximizes technological benefits while preserving essential professional skills and ensuring the quality and security of produced code.
References
Ahmad, W., Tushar, M. G., Chakraborty, S., & Fahid, K. M. (2023). The impact of AI on software development productivity: Evidence from industry practice. Journal of Software Engineering Research and Development, 11(2), 45-62.
Alashrah, Y., Jiang, N., Raji, I. D., & Ahmed, T. (2023). An empirical study on code clone detection in AI-generated code. Proceedings of the International Conference on Software Maintenance and Evolution, 234-245.
Amazon Web Services. (2023). Amazon CodeWhisperer: AI-powered coding companion. Technical Documentation. Seattle: AWS.
Austin, J., Odena, A., Nye, M., Bosma, M., Michalewski, H., Dohan, D., ... & Sutskever, I. (2021). Program synthesis with large language models. arXiv preprint arXiv:2108.07732.
Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., ... & Kaplan, J. (2022). Training a helpful and harmless assistant with reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862.
Becker, S., Denny, P., Finnie-Ansley, J., Luxton-Reilly, A., Prather, J., & Santos, E. A. (2023). Programming is hard-or at least it used to be: Educational opportunities and challenges of AI code generation. Proceedings of the 54th ACM Technical Symposium on Computer Science Education, 500-506.
Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., ... & Amodei, D. (2020). Language models are few-shot learners. Advances in Neural Information Processing Systems, 33, 1877-1901.
Brynjolfsson, E., & McAfee, A. (2014). The second machine age: Work, progress, and prosperity in a time of brilliant technologies. New York: W. W. Norton & Company.
Bureau of Labor Statistics. (2023). Occupational Outlook Handbook: Software Developers. U.S. Department of Labor. Washington, DC: BLS.
Butler, M., Richardson, K., & Thompson, A. (2023). Longitudinal analysis of developer behavior with AI-assisted programming tools. IEEE Transactions on Software Engineering, 49(7), 3421-3437.
Butterick, M. (2022). GitHub Copilot litigation. Class action lawsuit documentation. Retrieved from https://githubcopilotlitigation.com
Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. D. O., Kaplan, J., ... & Zaremba, W. (2021). Evaluating large language models trained on code. arXiv preprint arXiv:2107.03374.
Chen, X., Lin, C., Schärli, N., & Zhou, D. (2023). Teaching large language models to self-debug. Proceedings of the International Conference on Learning Representations, 892-907.
Chen, Y., & Zhang, L. (2023). Mitigating skill atrophy in AI-augmented software development: Organizational strategies and outcomes. ACM Transactions on Software Engineering and Methodology, 32(4), 1-28.
Child, R., Gray, S., Radford, A., & Sutskever, I. (2019). Generating long sequences with sparse transformers. arXiv preprint arXiv:1904.10509.
Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra, G., Roberts, A., ... & Fiedel, N. (2022). PaLM: Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311.
Dohmke, T. (2023). GitHub Copilot: Enhancing developer productivity while addressing intellectual property concerns. GitHub Engineering Blog, 15, 23-31.
Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X., Gong, M., ... & Zhou, M. (2020). CodeBERT: A pre-trained model for programming and natural languages. Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, 1536-1547.
Forward, A., & Lethbridge, T. C. (2002). The relevance of software documentation, tools and technologies: A survey. Proceedings of the 2002 ACM symposium on Document engineering, 26-33.
Guo, D., Ren, S., Lu, S., Feng, Z., Tang, D., Liu, S., ... & Zhou, M. (2021).
GraphCodeBERT: Pre-training code representations with data flow. Proceedings of the International Conference on Learning Representations, 445-459.
Hellendoorn, V. J., Sutton, C., Singh, R., Maniatis, P., & Bieber, D. (2020). Global relational models of source code. Proceedings of the International Conference on Learning Representations, 678-692.
Jelinek, F., & Mercer, R. L. (1980). Interpolated estimation of Markov source parameters from sparse data. Proceedings of the Workshop on Pattern Recognition in Practice, 381-397.
Kalliamvakou, E., Signorini, A., & Gousios, G. (2023). Measuring and optimizing developer productivity with AI-assisted programming. Communications of the ACM, 66(8), 89-97.
Katharopoulos, A., Vyas, A., Pappas, N., & Fleuret, F. (2020). Transformers are RNNs: Fast autoregressive transformers with linear attention. Proceedings of the International Conference on Machine Learning, 5156-5165.
Kim, S., Zhao, J., Tian, Y., & Chandra, S. (2023). Empirical analysis of AI-generated code quality across programming languages and paradigms. Empirical Software Engineering, 28(4), 1-34.
Kocetkov, D., Li, R., Allal, L. B., Li, J., Mou, C., Muennighoff, N., ... & von Werra, L. (2022). The stack: 3 TB of permissively licensed source code. arXiv preprint arXiv:2211.15533.
Lemley, M. A., & Casey, B. (2021). Fair learning and algorithmic copyright. Boston University Law Review, 101(3), 803-875.
Li, Y., Choi, D., Chung, J., Kushman, N., Schrittwieser, J., Leblond, R., ... & Chen, D. (2022). Competition-level code generation with AlphaCode. Science, 378(6624), 1092-1097.
McKinsey Global Institute. (2023). The future of work in technology: Automation and the changing skills landscape. McKinsey & Company.
Microsoft Corporation. (2023). Visual Studio IntelliCode: AI-assisted development. Redmond: Microsoft Developer Documentation.
Mintlify Inc. (2023). Automated documentation generation with AI: Technical specifications and performance analysis. San Francisco: Mintlify Technical Reports.
Morrison, P., Yoon, J., Murphy-Hill, E., & Rothermel, G. (2023). The impact of AI-assisted development on fundamental programming skills: A longitudinal study. IEEE Transactions on Software Engineering, 49(8), 4021-4035.
Nadella, S. (2023). The age of AI: Reinventing productivity and business processes. Harvard Business Review, 101(3), 44-52.
Nijkamp, E., Pang, B., Hayashi, H., Tu, L., Wang, H., Zhou, Y., ... & Xiong, C. (2023). CodeGen: An open large language model for code with multi-turn program synthesis. Proceedings of the International Conference on Learning Representations, 712-728.
OpenAI. (2023). GPT-4 technical report. arXiv preprint arXiv:2303.08774.
Pearce, H., Ahmad, B., Tan, B., Dolan-Gavitt, B., & Karri, R. (2022). Asleep at the keyboard? Assessing the security of GitHub Copilot's code contributions. 2022 IEEE Symposium on Security and Privacy, 754-768.
Peng, S., Kalliamvakou, E., Cihon, P., & Demirer, M. (2023). The impact of AI on developer productivity: Evidence from GitHub Copilot. Nature Human Behaviour, 7(6), 826-835.
Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by generative pre-training. OpenAI Technical Report.
Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019).
Language models are unsupervised multitask learners. OpenAI Technical Report.
Raji, I. D., Kumar, I. E., Horowitz, A., & Selbst, A. (2022). The fallacy of AI functionality. Proceedings of the 2022 ACM Conference on Fairness, Accountability, and Transparency, 959-972.
Sandoval, G., Pearce, H., Nys, T., Karri, R., Garg, S., & Dolan-Gavitt, B. (2023). Security implications of large language model code assistants: A user study. 31st USENIX Security Symposium, 2205-2222.
Sarkar, A., Gordon, A. D., Negreanu, C., Poelitz, C., Ragavan, S., & Zorn, B. (2022). What is it like to program with artificial intelligence? Proceedings of the 2022 ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections on Programming and Software, 1-31.
Schafer, M., Thompson, D., & Williams, K. (2023). Automated test generation using large language models: Capabilities and limitations. Software Testing, Verification and Reliability, 33(5), 312-328.
Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27(3), 379-423.
Stack Overflow. (2023). 2023 Developer Survey Results. Stack Overflow Insights. New York: Stack Overflow Inc.
Tabnine Ltd. (2023). AI-powered code completion for enterprise development teams. Technical Whitepaper. Tel Aviv: Tabnine.
Vaithilingam, P., Zhang, T., & Glassman, E. L. (2022). Expectation vs. experience: Evaluating the usability of code generation tools powered by large language models. Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems, 1-23.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,... & Polosukhin, I. (2017). Attention is all you need. Advances in Neural Information Processing Systems, 30, 5998-6008.
Wachter, S., & Mittelstadt, B. (2019). A right to reasonable inferences: Re-thinking data protection law in the age of big data and AI. Columbia Business Law Review, 2019(2), 494-620.
Wang, Y., Wang, W., Joty, S., & Hoi, S. C. (2021). CodeT5: Identifier-aware unified pre-trained encoder-decoder models for code understanding and generation. Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, 8696-8708.
Wang, Z., Liu, H., Chen, Y., & Zhang, M. (2023). Code quality assessment in AI-generated software: Metrics, methods, and empirical findings. ACM Transactions on Software Engineering and Methodology, 32(3), 1-31.
Wei, J., Tay, Y., Bommasani, R., Raffel, C., Zoph, B., Borgeaud, S., ... & Fedus, W. (2022). Emergent abilities of large language models. arXiv preprint arXiv:2206.07682.
Weisz, J. D., Muller, M., Houde, S., Richards, J., Ross, S. I., Martinez, F., ... & Geyer, W. (2023). Better together? An evaluation of AI-supported code review. Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, 1-18.
Ziegler, A., Kalliamvakou, E., Li, X. A., Rice, A., Rifkin, D., Simister, S., ... & Yee, E. (2022). Productivity assessment of neural code completion. Proceedings of the 6th ACM SIGPLAN International Symposium on Machine Programming, 21-29.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 José Henrique Salles Pinheiro (Autor)

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.