A VARIABILIDADE DA FREQUÊNCIA CARDÍACA PODE SER USADA PARA ESTIMAR O LIMIAR VENTILATÓRIO EM INDIVÍDUOS COM LESÃO MEDULAR?

Autores

  • Pablo Rodrigo de Oliveira Silva Autor
  • Emanuel Clemente de Oliveira Autor
  • Pâmela Vitorio Pessoa Vieira Autor
  • Pedro Emanoel Vidal Sampaio Autor

DOI:

https://doi.org/10.63330/armv1n9-003

Palavras-chave:

Tetraplegia, Paraplegia, Limiar ventilatório, Limiar da variabilidade da frequência cardíaca, Consumo de oxigênio

Resumo

Pessoas com lesão medular (LM) apresentam maior risco de desenvolver doenças cardiometabólicas do que pessoas sem LM. A prescrição de exercícios aeróbios tem sido recomendada para a prevenção e tratamento dessas doenças. Como padrão ouro para prescrição da intensidade deste tipo de exercício estão os limiares ventilatórios, que para serem medidos são necessários equipamentos sofisticados e profissionais especializados. Por isso, novos métodos para identificar o primeiro limiar ventilatório têm sido criados. Dessa forma, um dos objetivos do estudo foi avaliar a confiabilidade do limiar da variabilidade da frequência cardíaca (LiVFC) em estimar o primeiro limiar ventilatório (LV1) em indivíduos com LM. O outro objetivo foi comparar os valores referentes ao LV1 nas populações estudadas. Este é um estudo seccional com a participação de 17 indivíduos com LM, 09 com tetraplegia, 08 com paraplegia e 10 sem LM. Foi realizado um teste cardiopulmonar em esforço progressivo (TCPE) em cicloergômetro para membros superiores, com carga inicial de 20W, incrementos sucessivos de 2W ou 5W para tetraplégicos, e 5W para os indivíduos paraplégicos e sem LM, a cada minuto, com ciclagem entre 50-60 rpm. Foram consideradas as variáveis: VO2pico absoluto e relativo, valores de VO2, do percentual do VO2 de reserva (%VO2), da FC, do percentual da FC de reserva (%FCr) e da potência (W) referentes ao LV1. Foram realizadas comparações entre os subgrupos do estudo (Kruskal Wallis com post hoc de Bonferroni) e a verificação da validade das medidas foram verificadas pelo coeficiente de correlação intraclasse (ICC2,1) e pela abordagem gráfica de Altman e Bland. O nível de significância estatística foi de 5%. Nos tetraplégicos foi observado uma confiabilidade excelente (ICC>0,75) no VO2 e na potência no ponto do LV1. Nos paraplégicos o ICC foi excelente quanto à potência e aceitáveis quanto ao VO2 e a potência (ICC>0,40). Os indivíduos sem lesão apresentaram maiores valores quanto ao VO2 e potência no ponto de LV1 do que os indivíduos com LM (p<0,01). Dado o exposto, verificou-se que o LiVFC parece ser um método válido para prescrever a intensidade do exercício aeróbio em pessoas com LM.

Referências

ACSM. Diretrizes do ACSM para os testes de esforço e sua prescrição. 10a ed. Rio de Janeiro: [S.n.].

ALMEIDA, Marcos B.; ARAÚJO, Gil S. Efeitos do treinamento aeróbico sobre a freqüência cardíaca. v. 9, p. 104–112, 2003.

AU, Jason S. et al. Assessing Ventilatory Threshold in Individuals With Motor-Complete Spinal Cord Injury. Archives of Physical Medicine and Rehabilitation, v. 99, n. 10, p. 1991–1997, 2018.

BAUMGART, Julia Kathrin; BRUROK, Berit; SANDBAKK, Øyvind. Comparison of peak oxygen uptake between upper-body exercise modes: A systematic literature review and meta-analysis. Frontiers in Physiology, v. 11, n. May, p. 1–12, 2020.

BLAND, J. Martin; ALTMAN, Douglas G. Measuring agreement in method comparison Studies. Statistical Methods in Medical Research, v. 8, n. 2, p. 135–160, 1999.

BRUNETTO, Antônio Fernando et al. Limiar de variabilidade da freqüência cardíaca em adolecentes obesos e não-obesos. Revista Brasileira de Medicina do Esporte, v. 14, n. 2, p. 145–149, 2008.

BUCHFUHRER, M. J. et al. Optimizing the exercise protocol for cardiopulmonary assessment. Journal of Applied Physiology Respiratory Environmental and Exercise Physiology, v. 55, n. 5, p. 1558–1564, 1983.

BUNTEN, David C. et al. Heart rate variability is altered following spinal cord injury. Clinical Autonomic Research, v. 8, n. 6, p. 329–334, 1998.

CASSIRAME, Johan et al. Heart rate variability to assess ventilatory threshold in ski-mountaineering. European Journal of Sport Science, v. 15, n. 7, p. 615–622, 2015.

COMPHER, Charlene et al. Best Practice Methods to Apply to Measurement of Resting Metabolic Rate in Adults: A Systematic Review. Journal of the American Dietetic Association, v. 106, n. 6, p. 881–903, 2006.

COTTIN, François et al. Ventilatory thresholds assessment from heart rate variability during an incremental exhaustive running test. International Journal of Sports Medicine, v. 28, n. 4, p. 287–294, 2007.

COUTTS, K. D.; MCKENZIE, D. C. Ventilatory thresholds during wheelchair exercise in individuals with spinal cord injuries. Paraplegia, v. 33, n. 7, p. 419–422, 1995.

CRAGG, Jacquelyn J. et al. Spinal cord injury and type 2 diabetes Results from a population health survey. Neurology, v. 81, n. 21, p. 1864–1868, 2013.

CUNHA, F. A. et al. Influence of exercise modality on agreement between gas exchange and heart rate variability thresholds. Brazilian Journal of Medical and Biological Research, v. 47, n. 8, p. 706–714, 2014.

CUNHA, Felipe A. et al. How Long Does It Take to Achieve Steady State for an Accurate Assessment of Resting VO₂ in Healthy Men? Eur J Appl Physiol, v. 113, n. 6, p. 1441–1447, 2013.

DALLMEIJER, A. J. et al. Physical capacity and physical strain in persons with tetraplegia; The role of sport activity. Spinal Cord, v. 34, n. 12, p. 729–735, 1996.

DAVIS, J. A. Anaerobic threshold: review of the concept and directions for future research. Medicine and Science in Sports and Exercise, v. 17, n. 1, p. 6–21, 1985.

DOURADO, V. Z.; GUERRA, R. L. F. Reliability and validity of heart rate variability threshold assessment during an incremental shuttle-walk test in middle-aged and older adults. Brazilian Journal of Medical and Biological Research, v. 46, n. 2, p. 194–199, 2013.

GASKILL, S. E. et al. Validity and reliability of combining three methods to determine ventilatory threshold. Medicine and Science in Sports and Exercise, v. 33, n. 11, p. 1841–1848, 2001.

GATER, David R. Obesity After Spinal Cord Injury. Physical Medicine and Rehabilitation Clinics of North America, v. 18, n. 2, p. 333–351, 2007.

GINIS, M. et al. Evidence-based scientific exercise guidelines for adults with spinal cord injury: An update and a new guideline. Spinal Cord, v. 56, n. 4, p. 308–321, 2018.

GOOSEY-TOLFREY, Victoria L. et al. Development of scientific exercise guidelines for adults with spinal cord injury. British Journal of Sports Medicine, v. 52, n. 18, p. 1166–1167, 2018.

GRANNELL, Andrew; VITO, Giuseppe De. An investigation into the relationship between heart rate variability and the ventilatory threshold in healthy moderately trained males. p. 1–7, 2017.

GRIGOREAN, Valentin Titus et al. Cardiac dysfunctions following spinal cord injury. Journal of medicine and life, v. 2, n. 2, p. 133–145, 2009.

GUPTA, N.; WHITE, K. T.; SANDFORD, P. R. Body mass index in spinal cord injury - A retrospective study. Spinal Cord, v. 44, n. 2, p. 92–94, 2006.

HAENNEL, Robert G.; LEMIRE, Francine. Physical activity to prevent cardiovascular disease. How much is enough? Canadian Family Physician, v. 48, n. JAN., p. 65–71, 2002.

HOLMLUND, Tobias et al. Intensity of physical activity as a percentage of peak oxygen uptake, heart rate and Borg RPE in motor-complete para- And tetraplegia. PLoS ONE, v. 14, n. 12, p. 1–13, 2019.

HOPMAN, Maria T. et al. The Effect of Varied Fractional Inspired Oxygen on Arm Exercise Performance in Spinal Cord Injury and Able-Bodied Persons. Archives of Physical Medicine and Rehabilitation, v. 85, n. 2, p. 319–323, 2004.

HOWLEY, E. T.; BASSETT, D. R.; WELCH, H. G. Criteria for Maximal Oxygen Uptake: Review and Commentary. Med Sci Sports Exerc, v. 27, n. 9, p. 1292–1301, 1995.

IWRF. Manual de classificação da IWRF, 3a edição, revisado 2011. Disponível em: https://worldwheelchair.rugby/wp-content/uploads/2022/11/2021-Wheelchair-Rugby-International-Rules-Portugues-1.pdf.

KANG, Jie et al. Regulating exercise intensity using ratings of perceived exertion during arm and leg ergometry. European Journal of Applied Physiology and Occupational Physiology, v. 78, n. 3, p. 241–246, 1998.

KARAPETIAN, Gregory K.; ENGELS, H. J.; GRETEBECK, R. J. Use of heart rate variability to estimate LT and VT. International Journal of Sports Medicine, v. 29, n. 8, p. 652–657, 2008.

KRAUSE, James S.; CAO, Yue; DIPIRO, Nicole. Psychological factors and risk of mortality after spinal cord injury. Journal of Spinal Cord Medicine, v. 0, n. 0, p. 1–9, 2019.

KYRIAKIDES, Athanasios et al. The effect of level of injury and physical activity on heart rate variability following spinal cord injury. Journal of Spinal Cord Medicine, v. 42, n. 2, p. 212–219, 2019.

LAUGHTON, G. E. et al. Lowering body mass index cutoffs better identifies obese persons with spinal cord injury. Spinal Cord, v. 47, n. 10, p. 757–762, 2009.

LAVELA, Sherri L. et al. Males aging with a spinal cord injury: prevalence of cardiovascular and metabolic conditions. Archives of Physical Medicine and Rehabilitation, v. 93, n. 1, p. 90–95, 2012.

LEICHT, C. A. et al. Blood lactate and ventilatory thresholds in wheelchair athletes with tetraplegia and paraplegia. European Journal of Applied Physiology, v. 114, n. 8, p. 1635–1643, 2014.

LEICHT, C. A.; BISHOP, N. C.; GOOSEY-TOLFREY, V. L. Submaximal exercise responses in tetraplegic, paraplegic and non spinal cord injured elite wheelchair athletes. Scandinavian Journal of Medicine and Science in Sports, v. 22, n. 6, p. 729–736, 2012.

LIMA, Jorge Roberto Perrout; KISS, Maria Augusta Peduti Dal’Molin. LIMIAR DE VARIABILIDADE DA FREQÜÊNCIA CARDÍACA. Revista Brasileira de Atividade Física e Saúde, v. 4, n. 1, p. 10, 1999.

MATSUDO, S. et al. Questionário Internacional De Atividade Física (Ipaq): Estupo De Validade E Reprodutibilidade No Brasil. Revista Brasileira de Atividade Física & Saúde, v. 6, n. 2, p. 5–18, 2012.

MAUNDER, E. et al. Exercise intensity regulates the effect of heat stress on substrate oxidation rates during exercise. European Journal of Sport Science, v. 0, n. 0, p. 1–23, 2019.

MCNARRY, Melitta A.; LEWIS, Michael J. Heart rate variability reproducibility during exercise. Physiological Measurement, v. 33, n. 7, p. 1123–1133, 2012.

MILLET, Gregoire P.; VLECK, V. E.; BENTLEY, D. J. Physiological differences between cycling and running: Lessons from triathletes. Sports Medicine, v. 39, n. 3, p. 179–206, 2009.

MITCHELL, Jere H. Cardiovascular control during exercise: Central and reflex neural mechanisms. The American Journal of Cardiology, v. 55, n. 10, 1985.

NAKAMURA, Fábio Yuzo; MOREIRA, Alexandre; AOKI, Marcelo Saldanha. Monitoramento da carga de treinamento: a percepção subjetiva do esforço da sessão é um método confiável? Revista da Educação Física/UEM, v. 21, n. 1, 2010.

NORTON, K.; OLDS, T. Antropometrica. 1a. ed. São Paulo: [S.n.].

NOVELLI, Fabiula Isoton et al. Reproducibility of Heart Rate Variability Threshold in Untrained Individuals. International Journal of Sports Medicine, v. 40, n. 2, p. 95–99, 2019.

ORR, J. L. et al. Cardiopulmonary exercise testing: Arm crank vs cycle ergometry. Anaesthesia, v. 68, n. 5, p. 497–501, 2013.

PASCHOAL, Mário Augusto; FONTANA, Caio Cesar. Método do limiar de variabilidade da frequência cardíaca aplicado em pré-adolescentes obesos e não obesos. Arquivos Brasileiros de Cardiologia, v. 96, n. 6, p. 450–456, 2011.

PERINI, Renza; VEICSTEINAS, Arsenio. Heart rate variability and autonomic activity at rest and during exercise in various physiological conditions. European Journal of Applied Physiology, v. 90, n. 3–4, p. 317–325, 2003.

SALES, Marcelo M. et al. Noninvasive method to estimate anaerobic threshold in individuals with type 2 diabetes. Diabetology and Metabolic Syndrome, v. 3, n. 1, p. 1–8, 2011.

SHROUT, Patrick E.; FLEISS, Joseph L. Intraclass correlations: Uses in assessing rater reliability. Psychological Bulletin, v. 86, n. 2, p. 420–428, 1979.

SILVA, Antônio Carlos da; TORRES, Fernando Carmelo. Ergoespirometria em atletas paraolímpicos brasileiros. Revista Brasileira de Medicina do Esporte, v. 8, n. 3, p. 107–116, 2002.

SIMÕES, Rodrigo P. et al. Use of heart rate variability to estimate lactate threshold in coronary artery disease patients during resistance exercise. Journal of Sports Science and Medicine, v. 15, n. 4, p. 649–657, 2016.

SOUZA, Lívia Victorino de et al. Cardiac autonomic modulation in healthy subjects with a family history of chronic kidney disease. Jornal brasileiro de nefrologia : ’orgão oficial de Sociedades Brasileira e Latino-Americana de Nefrologia, v. 35, n. 1, p. 42–47, 2013.

ACSM. Diretrizes do ACSM para os testes de esforço e sua prescrição. 10a ed. Rio de Janeiro: [S.n.].

ALMEIDA, Marcos B.; ARAÚJO, Gil S. Efeitos do treinamento aeróbico sobre a freqüência cardíaca. v. 9, p. 104–112, 2003.

AU, Jason S. et al. Assessing Ventilatory Threshold in Individuals With Motor-Complete Spinal Cord Injury. Archives of Physical Medicine and Rehabilitation, v. 99, n. 10, p. 1991–1997, 2018.

BAUMGART, Julia Kathrin; BRUROK, Berit; SANDBAKK, Øyvind. Comparison of peak oxygen uptake between upper-body exercise modes: A systematic literature review and meta-analysis. Frontiers in Physiology, v. 11, n. May, p. 1–12, 2020.

BLAND, J. Martin; ALTMAN, Douglas G. Measuring agreement in method comparison Studies. Statistical Methods in Medical Research, v. 8, n. 2, p. 135–160, 1999.

BRUNETTO, Antônio Fernando et al. Limiar de variabilidade da freqüência cardíaca em adolecentes obesos e não-obesos. Revista Brasileira de Medicina do Esporte, v. 14, n. 2, p. 145–149, 2008.

BUCHFUHRER, M. J. et al. Optimizing the exercise protocol for cardiopulmonary assessment. Journal of Applied Physiology Respiratory Environmental and Exercise Physiology, v. 55, n. 5, p. 1558–1564, 1983.

BUNTEN, David C. et al. Heart rate variability is altered following spinal cord injury. Clinical Autonomic Research, v. 8, n. 6, p. 329–334, 1998.

CASSIRAME, Johan et al. Heart rate variability to assess ventilatory threshold in ski-mountaineering. European Journal of Sport Science, v. 15, n. 7, p. 615–622, 2015.

COMPHER, Charlene et al. Best Practice Methods to Apply to Measurement of Resting Metabolic Rate in Adults: A Systematic Review. Journal of the American Dietetic Association, v. 106, n. 6, p. 881–903, 2006.

COTTIN, François et al. Ventilatory thresholds assessment from heart rate variability during an incremental exhaustive running test. International Journal of Sports Medicine, v. 28, n. 4, p. 287–294, 2007.

COUTTS, K. D.; MCKENZIE, D. C. Ventilatory thresholds during wheelchair exercise in individuals with spinal cord injuries. Paraplegia, v. 33, n. 7, p. 419–422, 1995.

CRAGG, Jacquelyn J. et al. Spinal cord injury and type 2 diabetes Results from a population health survey. Neurology, v. 81, n. 21, p. 1864–1868, 2013.

CUNHA, F. A. et al. Influence of exercise modality on agreement between gas exchange and heart rate variability thresholds. Brazilian Journal of Medical and Biological Research, v. 47, n. 8, p. 706–714, 2014.

CUNHA, Felipe A. et al. How Long Does It Take to Achieve Steady State for an Accurate Assessment of Resting VO₂ in Healthy Men? Eur J Appl Physiol, v. 113, n. 6, p. 1441–1447, 2013.

DALLMEIJER, A. J. et al. Physical capacity and physical strain in persons with tetraplegia; The role of sport activity. Spinal Cord, v. 34, n. 12, p. 729–735, 1996.

DAVIS, J. A. Anaerobic threshold: review of the concept and directions for future research. Medicine and Science in Sports and Exercise, v. 17, n. 1, p. 6–21, 1985.

DOURADO, V. Z.; GUERRA, R. L. F. Reliability and validity of heart rate variability threshold assessment during an incremental shuttle-walk test in middle-aged and older adults. Brazilian Journal of Medical and Biological Research, v. 46, n. 2, p. 194–199, 2013.

GASKILL, S. E. et al. Validity and reliability of combining three methods to determine ventilatory threshold. Medicine and Science in Sports and Exercise, v. 33, n. 11, p. 1841–1848, 2001.

GATER, David R. Obesity After Spinal Cord Injury. Physical Medicine and Rehabilitation Clinics of North America, v. 18, n. 2, p. 333–351, 2007.

GINIS, M. et al. Evidence-based scientific exercise guidelines for adults with spinal cord injury: An update and a new guideline. Spinal Cord, v. 56, n. 4, p. 308–321, 2018.

GOOSEY-TOLFREY, Victoria L. et al. Development of scientific exercise guidelines for adults with spinal cord injury. British Journal of Sports Medicine, v. 52, n. 18, p. 1166–1167, 2018.

GRANNELL, Andrew; VITO, Giuseppe De. An investigation into the relationship between heart rate variability and the ventilatory threshold in healthy moderately trained males. p. 1–7, 2017.

GRIGOREAN, Valentin Titus et al. Cardiac dysfunctions following spinal cord injury. Journal of medicine and life, v. 2, n. 2, p. 133–145, 2009.

GUPTA, N.; WHITE, K. T.; SANDFORD, P. R. Body mass index in spinal cord injury - A retrospective study. Spinal Cord, v. 44, n. 2, p. 92–94, 2006.

HAENNEL, Robert G.; LEMIRE, Francine. Physical activity to prevent cardiovascular disease. How much is enough? Canadian Family Physician, v. 48, n. JAN., p. 65–71, 2002.

HOLMLUND, Tobias et al. Intensity of physical activity as a percentage of peak oxygen uptake, heart rate and Borg RPE in motor-complete para- And tetraplegia. PLoS ONE, v. 14, n. 12, p. 1–13, 2019.

HOPMAN, Maria T. et al. The Effect of Varied Fractional Inspired Oxygen on Arm Exercise Performance in Spinal Cord Injury and Able-Bodied Persons. Archives of Physical Medicine and Rehabilitation, v. 85, n. 2, p. 319–323, 2004.

HOWLEY, E. T.; BASSETT, D. R.; WELCH, H. G. Criteria for Maximal Oxygen Uptake: Review and Commentary. Med Sci Sports Exerc, v. 27, n. 9, p. 1292–1301, 1995.

IWRF. Manual de classificação da IWRF, 3a edição, revisado 2011. Disponível em: https://worldwheelchair.rugby/wp-content/uploads/2022/11/2021-Wheelchair-Rugby-International-Rules-Portugues-1.pdf.

KANG, Jie et al. Regulating exercise intensity using ratings of perceived exertion during arm and leg ergometry. European Journal of Applied Physiology and Occupational Physiology, v. 78, n. 3, p. 241–246, 1998.

KARAPETIAN, Gregory K.; ENGELS, H. J.; GRETEBECK, R. J. Use of heart rate variability to estimate LT and VT. International Journal of Sports Medicine, v. 29, n. 8, p. 652–657, 2008.

KRAUSE, James S.; CAO, Yue; DIPIRO, Nicole. Psychological factors and risk of mortality after spinal cord injury. Journal of Spinal Cord Medicine, v. 0, n. 0, p. 1–9, 2019.

KYRIAKIDES, Athanasios et al. The effect of level of injury and physical activity on heart rate variability following spinal cord injury. Journal of Spinal Cord Medicine, v. 42, n. 2, p. 212–219, 2019.

LAUGHTON, G. E. et al. Lowering body mass index cutoffs better identifies obese persons with spinal cord injury. Spinal Cord, v. 47, n. 10, p. 757–762, 2009.

LAVELA, Sherri L. et al. Males aging with a spinal cord injury: prevalence of cardiovascular and metabolic conditions. Archives of Physical Medicine and Rehabilitation, v. 93, n. 1, p. 90–95, 2012.

LEICHT, C. A. et al. Blood lactate and ventilatory thresholds in wheelchair athletes with tetraplegia and paraplegia. European Journal of Applied Physiology, v. 114, n. 8, p. 1635–1643, 2014.

LEICHT, C. A.; BISHOP, N. C.; GOOSEY-TOLFREY, V. L. Submaximal exercise responses in tetraplegic, paraplegic and non spinal cord injured elite wheelchair athletes. Scandinavian Journal of Medicine and Science in Sports, v. 22, n. 6, p. 729–736, 2012.

LIMA, Jorge Roberto Perrout; KISS, Maria Augusta Peduti Dal’Molin. LIMIAR DE VARIABILIDADE DA FREQÜÊNCIA CARDÍACA. Revista Brasileira de Atividade Física e Saúde, v. 4, n. 1, p. 10, 1999.

MATSUDO, S. et al. Questionário Internacional De Atividade Física (Ipaq): Estupo De Validade E Reprodutibilidade No Brasil. Revista Brasileira de Atividade Física & Saúde, v. 6, n. 2, p. 5–18, 2012.

MAUNDER, E. et al. Exercise intensity regulates the effect of heat stress on substrate oxidation rates during exercise. European Journal of Sport Science, v. 0, n. 0, p. 1–23, 2019.

MCNARRY, Melitta A.; LEWIS, Michael J. Heart rate variability reproducibility during exercise. Physiological Measurement, v. 33, n. 7, p. 1123–1133, 2012.

MILLET, Gregoire P.; VLECK, V. E.; BENTLEY, D. J. Physiological differences between cycling and running: Lessons from triathletes. Sports Medicine, v. 39, n. 3, p. 179–206, 2009.

MITCHELL, Jere H. Cardiovascular control during exercise: Central and reflex neural mechanisms. The American Journal of Cardiology, v. 55, n. 10, 1985.

NAKAMURA, Fábio Yuzo; MOREIRA, Alexandre; AOKI, Marcelo Saldanha. Monitoramento da carga de treinamento: a percepção subjetiva do esforço da sessão é um método confiável? Revista da Educação Física/UEM, v. 21, n. 1, 2010.

NORTON, K.; OLDS, T. Antropometrica. 1a. ed. São Paulo: [S.n.].

NOVELLI, Fabiula Isoton et al. Reproducibility of Heart Rate Variability Threshold in Untrained Individuals. International Journal of Sports Medicine, v. 40, n. 2, p. 95–99, 2019.

ORR, J. L. et al. Cardiopulmonary exercise testing: Arm crank vs cycle ergometry. Anaesthesia, v. 68, n. 5, p. 497–501, 2013.

PASCHOAL, Mário Augusto; FONTANA, Caio Cesar. Método do limiar de variabilidade da frequência cardíaca aplicado em pré-adolescentes obesos e não obesos. Arquivos Brasileiros de Cardiologia, v. 96, n. 6, p. 450–456, 2011.

PERINI, Renza; VEICSTEINAS, Arsenio. Heart rate variability and autonomic activity at rest and during exercise in various physiological conditions. European Journal of Applied Physiology, v. 90, n. 3–4, p. 317–325, 2003.

SALES, Marcelo M. et al. Noninvasive method to estimate anaerobic threshold in individuals with type 2 diabetes. Diabetology and Metabolic Syndrome, v. 3, n. 1, p. 1–8, 2011.

SHROUT, Patrick E.; FLEISS, Joseph L. Intraclass correlations: Uses in assessing rater reliability. Psychological Bulletin, v. 86, n. 2, p. 420–428, 1979.

SILVA, Antônio Carlos da; TORRES, Fernando Carmelo. Ergoespirometria em atletas paraolímpicos brasileiros. Revista Brasileira de Medicina do Esporte, v. 8, n. 3, p. 107–116, 2002.

SIMÕES, Rodrigo P. et al. Use of heart rate variability to estimate lactate threshold in coronary artery disease patients during resistance exercise. Journal of Sports Science and Medicine, v. 15, n. 4, p. 649–657, 2016.

SOUZA, Lívia Victorino de et al. Cardiac autonomic modulation in healthy subjects with a family history of chronic kidney disease. Jornal brasileiro de nefrologia : ’orgão oficial de Sociedades Brasileira e Latino-Americana de Nefrologia, v. 35, n. 1, p. 42–47, 2013.

TASK FORCE. Guidelines Heart rate variability. European Heart Journal, v. 17, p. 354–381, 1996.

TULPPO, Mikko P. et al. Analvsis of Heart Rate Dynamics During Exkrcise. American Physiological Society, p. 244–252, 1996.

VASCONCELLOS, F. et al. Can Heart Rate Variability be used to Estimate Gas Exchange Threshold in Obese Adolescents? International Journal of Sports Medicine, v. 36, n. 8, p. 654–660, 2015.

WASSERMAN, K. et al. Anaerobic Threshold and Respiratory Gas Exchange During Exercise. Journal of Applied Physiology, v. 35, n. 2, p. 236–43, 1973.

WASSERMAN, K. et al. Prova de Esforço: príncipios e interpretação. 3a ed. Rio de Janeiro: [S.n.].

WEIR, Joseph P. Quantifying test-retest reliability using the intraclass correlation coefficient and the sem. J Strength Cond Res, v. 19, n. 1, p. 231–240, 2005.

Downloads

Publicado

2025-11-12

Como Citar

A VARIABILIDADE DA FREQUÊNCIA CARDÍACA PODE SER USADA PARA ESTIMAR O LIMIAR VENTILATÓRIO EM INDIVÍDUOS COM LESÃO MEDULAR?. (2025). Aurum Revista Multidisciplinar, 1(9), 30-53. https://doi.org/10.63330/armv1n9-003