KINETIC CHARACTERIZATION OF ACID PHOSPHATASE OF Enterobacter sp. ISOLATED FROM ORCHID

Authors

  • Gustavo Bonagamba Sandrini Autor
  • Vanessa Sayuri Sato Autor
  • Renato Fernandes Galdiano Júnior Autor
  • Eliana Gertrudes Macedo Lemos Autor
  • Anna Carolina de Souza Autor
  • Luiz Flávio José dos Santos Autor
  • Joao Martins Pizauro Junior Autor

DOI:

https://doi.org/10.63330/aurumpub.012-044

Keywords:

Phosphorus solubilization, Rhizobacteria, Microbial enzymes, Phosphomonohydrolases

Abstract

Phosphorus is an essential nutrient for plant growth, but its availability in soil is often limited due to the predominance of insoluble organic forms. Root-associated microorganisms, such as plant growth-promoting bacteria (PGPR), play a crucial role in phosphorus solubilization through the production of hydrolytic enzymes, such as phosphatases. This study aimed to kinetically characterize the acid phosphatase produced by a strain of Enterobacter sp. (C45), isolated from the roots of the orchid Cyrtopodium paludicolum. The enzyme was produced in culture media with different phosphate concentrations, with maximum activity observed at 5 mM. The phosphatase exhibited an apparent optimum pH of 3.5 and demonstrated the ability to hydrolyze various phosphorylated substrates, such as p-nitrophenylphosphate (p-NFF), ATP, and pyrophosphate, with Michaelian kinetics for p-NFF and positive cooperativity for the others. Inhibition studies revealed sensitivity to metals (Cu²⁺) and phosphate analogs (arsenate, vanadate), with competitive and non-competitive inhibition modes. The enzyme demonstrated thermal stability up to 45°C, with rapid inactivation at higher temperatures. The results indicate that acid phosphatase from Enterobacter sp. has distinctive catalytic properties and biotechnological potential for application in phosphorus solubilization processes under acidic conditions, such as in sustainable agriculture and the animal feed industry.

Downloads

Download data is not yet available.

References

ALTSCHUL, S. F.; MADDEN, T. L.; SCHAFFER, A. A.; ZHANG, J.; ZHANG, Z.; MILLER, W.; LIPMAN, D. J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research. v. 25, n. 17, p. 3389-3402, 1997.

ARAUJO, P. A.; MIES, V.; MIRANDA, A. Subcellular distribution of low and high molecular weight acid phosphatases. Biochimica et Biophysica Acta, v. 452, n. 1, p. 121-130, 1976.

AVIS, T. J.; GRAVEL, V.; ANTOUN, H.; TWEDDELL, R. J. Multifaceted beneficial effects of rhizosphere microorganisms on plant health and productivity. Soil Biology and Biochemistry, Elmsford, v.40, n.7, p.1733–1740, 2008.

BAREA, J. M.; POZO, M. J.; AZCÓN, R.; AZCÓN-AGUILAR, C. Microbial cooperation in the rhizosphere. Journal of Experimental Botany, v. 56, n. 417, p. 1761–1778, 2005.

ESPOSITO, E.; AZEVEDO, J. L. Fungos: uma introdução à biologia, bioquímica e biotecnologia. P. 451-490, Educs, Caxias do Sul, 2004.

EVERITT, B. S. The Cambridge Dictionary of Statistics. Cambridge: Cambridge University Press, p. 360, 1998.

FEDER, J. The phosphatases. In: GRIFITH, E. J.; BECTEN, A.; SPENCER, J. M.; MITCHEL, D. T. Environmental Phosphorus Handbook. New York: John Wiley, p.475-507,1973.

GALDIANO JÚNIOR, R. F. Isolamento, Identificação e inoculação de bactérias produtoras de auxinas associadas às raízes de orquídeas. 2008. 84 f. Dissertação (Mestrado em Genética e Melhoramento de Plantas). Universidade Estadual Paulista, Jaboticabal, 2008.

GARCIA-SÁNCHES, M. J.; FERNÁNDEZ, J. A.; NIELL, F. X. Photosynthetic response of P-deficient Gracilaria tenuistipitata under two different phosphate treatments: Physiologia Plantarum, v. 96, n. 4, p.601-606, 1996.

GILBERT, G. A.; KNIGHT, J. D.; VANCE, C. P.; ALLAN D. L. Acid phosphatase activity in phosphorus-deficient white lupin roots. Plant, Cell and Environment, v. 22, n. 7, p. 801–810, 1999.

GOLOVAN, S.; WANG, G.; ZHANG, J.; FORSBERG, C. W. Characterization and overproduction of the Escherichia coli appA encoded bifunctional enzyme that exhibits both phytase and acid phosphatase activities. Canadian Journal of Microbiology, v. 46, n. 1, p. 59–71, 1999.

HALL, P. BioEdit – version 5.0.6. Raleigh. North Carolina State University, Department of Microbiology, p. 192, 2001.

HALLMAN, J.; QUADT-HALLMANN, A.; MAHAFFEE, W. F.; KLOEPPER, J. W. Bacterial entophytes in agricultural crops. Canadian Journal of Microbiology, v.43, n. 10, p.895-914, 1997.

HARTREE, E. F. Determination of protein. A modification of the Lowry method that gives a linear photometric response. Analytical Biochemistry, v. 48, n. 2, p.422427, 1972.

HEINONEN, J. K.; LAHTI, R. J. A new and convenient colorimetric determination of inorganic orthophosphate and its application to the assay of inorganic pyrophosphatase. Analytical Biochemistry, v.113, n. 2, p.313-317. 1981.

JEFFRIES, P.; BAREA J. M. Arbuscular Micorriza – A key component of sustainable plant-soil ecosystems. The Mycota, v. 4, p. 95-113, 2000.

JIA, Z. Protein phosphatases: structures and implications. Biochemistry and Cell biology, v. 75, n. 1, p. 17-26, 1997.

KANG, S. H. et al. Cloning, Sequencing and Characterization of a Novel Phosphatase Gene, phoI, from Soil Bacterium Enterobacter sp. 4. Current Microbiology, v. 52, p. 243–248, 2006.

KLOEPPER J. W.; LIFSHITZ K.; ZABLOTOWICZ, R. M. Free living bacterial inocula for enhancing crop productivity. Trends in Biotchnology, v. 7, n. 2, p. 3943, 1989.

LAU, K. H. W.; FARLEY, J. R.; BAYLINK, D. J. Phosphotyrosyl-specific protein phosphatase activity of a bovine skeletal acid phosphatase isoenzyme. Comparison with the phosphotyrosyl protein phosphatase activity of skeletal alkaline phosphatase. Journal of Biological Chemistry, v.260, n. 8, p.4653– 4660, 1985.

LEE, T.; MAKINO, K.; SHINAGAWA, H.; AMEMURA, M.; NAKATA, A. Phosphate Regulon in Members of the Family Enterobacteriaceae: Comparison of the phoBphoR Operons of Escherichia coli, Shigella dysenteriae, and Klebsiella pneumonia. Journal of Bacteriology, v. 171, n. 12, p. 6593-6599, 1989.

LEE, R. B. Phosphate influx and extracellular phosphatase activity in barley roots and rose cells. New Physiology, v. 109, p. 141-148, 1998.

LEHNINGER, A. L. Princípios da Bioquímica. São Paulo: Sarvieri, p. 37, 1994.

LINEWEAVER, H.; BURK, D. The Determination of Enzyme Dissociation Constants. Bureau of Chemistry and soil, v. 56, n. 3, p. 658-666, 1933.

LÓPEZ-BUCIO, J.; HERNADÉZ-ABREU, E.; SÁNCHEZ-CALEDERÓN, L.; NIETOJACOBO, M. F.; SIMPSON, J.; HERRERA-ESTRELLA, L. Phosphate availability lters architecture and causes changes in hormone sensitivity in the Arabidopsis root systems. Plant Physiology, v.129, n. 1, p.244-256, 2002.

LUNG, S. C.; LIM, B. L. Assimilation of phytate-phosphorus by the extracellular phytase activity of tobacco (Nicotiana tabacum) is affected by the availability of soluble phytate. Plant and Soil, v. 279, n.1-2, p. 187-199, 2006.

MEHNAZ, S.; LAZAROVITS, G. Inoculation effects of Pseudomonas putida, Gluconacetobacter azotocaptans, and Azospirillum lipoferum on corn plant growth under greenhouse conditions. Microbial Ecology, v. 51, n. 3, p. 326-335, 2006.

NAHAS, E.; CENTURION, J. F.; ASSIS, L. C. Microrganismos solubilizadores de fosfato e produtores de fosfatases de vários solos. Revista Brasileira de Ciência do Solo, v. 18, n. 1, p. 43-48, 1994.

NARLOCH, C.; OLIVEIRA, V. L.; ANJOS, J. T.; SILVA FILHO, G. N. Respostas da cultura do rabanete à inoculação de fungos solubilizadores de fosfatos, Pesquisa Agropecuária Brasileira, v. 37, n. 6, p. 841-845, 2002.

OH, B. C.; CHOI, W. C.; PARK, S.; KIM, Y. O.; OH, T. K. Biochemical properties and substrate specificities of alkaline and histidine acid phytases. Applied Microbiology and Biotechnology, v. 63, n. 4, p. 362–372, 2004.

PÉREZ, E.; SULBARAN, M.; BALL, M.; YARZABAL, L. A. Isolation and characterization of mineral phosphate-solubilizing bacteria naturally colonizing a limonitic crust in the south-eastern Venezuelan region. Soil Biology and Biochemistry, v. 39, n. 11, p. 2905-2914, 2007.

PIZAURO, J. M.; CIANCAGLINI, P.; LEONE, F. A. Characterization of the phosphatidylinositol-specific phospholipase C-released form of rat osseous plate alkaline phosphatase and its possible significance on endochondral ossification. Molecular and Cellular Biochemistry, v.152, n. 2, p.121-129, 1995.

PIZZOLANTE, C. C. Estabilidade da fitase e sua utilização na alimentação de frangos de corte. 2000. 117f. Tese Doutorado – Faculdade de Zootecnia, Universidade Federal de Viçosa, Viçosa, 2000.

RHAGHOTHAMA, K. G. Phosphate acquisition. Annual Review of Plant Physiology and Plant Molecular Biology, Stanford, v. 50, p. 665-693, 1999.

ROBERTS, D. L.; DIXON, K. W. Orchids. Current Biology, v. 18, p. 325-329, 2008.

ROSSOLINI, G. M.; SCHIPPAB, S.; RICCIOA, M. L.; BERLUTTIB, F.; MACASKIEC, L. E.; THALLERD, M. C. Bacterial nonspecific acid phosphohydrolases: physiology, evolution and use as tools in microbial biotechnology CMLS, Celular and Molecular Life Science, v. 54, n. 8, p.833–850, 1998.

SAITOU, N.; NEI, M. The neighbor-joining method: a new method for constructing phylogenetic trees. Molecular Biology Evolution, v. 4, n. 4, p. 406-425, 1987.

SÁNCHEZ, P.; SALINAS, G. Suelos ácidos y estratégias para su manejo con bajos insumos en América Tropical. SCCS. Bogota, Colombia. 93 p. 1983.

SATO, V. S. Indução da expressão in vivo e caracterização cinética da fosfatase ácida de Enterobacter sp. Isolada de raízes de orquidáceas. 2011. 56 f. Dissertação (Mestrado em Microbiologia Agropecuária) – Universidade Estadual Paulista, Jaboticabal, 2011.

SHENG, X.; CHEN, X.; HE, L. Characteristics of an endophytic pyrene-degrading bacterium of Enterobacter sp. 12J1 from Allium macrostemon Bunge. International Biodeterioration and Biodegradation, v. 62, n. 2, p. 88–95, 2008.

SWOFFORD, D. L.; OLSEN, G. J.; WADDELL, P. J.; HILLIS, D. M. Phylogenetic Inference. In Hiillis, D. M.; Moritz, D.; Mable, B. K. editors, Molecular Systematics, p. 407-514, 1996.

THALLER, M. C.; BERLUTTI, F.; SCHIPPA, S. IORI, P.; PASSARIELLO, C.; ROSSOLINI, G. M. Heterogeneous Patterns of Acid Phosphatases Containing Low-Molecular-Mass Polypeptides in Members of the Family Enterobacteriaceae. International Journal of Systematic Bacteriology, v. 45, n. 2, p. 255-261, 1995.

THOMPSON, J. D.; HIGGINS, D. G.; GIBSON, T. J. Clustal W. Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Research, v. 22, n. 22, p. 4673-4680, 1994.

TOH-E, A.; UEDA, Y.; KAKIMOTO, S. I.; OSHIMA, Y. Isolation and characterization of acid phosphatase mutants in Saccharomyces cerevisiae. Journal of Bacteriology, v. 113, n. 2, p. 727-738, 1973.

TONKS, N. K.; NEEL, B. G. From form to function: signaling by protein tyrosine phosphatases, Cell, v. 87, n. 3, p. 365-368, 1996

TSOU, C. L. Location of the active sites of some enzymes in limited and flexible molecular regions. Trends in Biochemical Sciences, vol. 11, n. 10, p. 427–429, 1986.

VERMA, S. C.; LADHA, J. K; TRIPATHI, A. K. Evaluation of plant growth promoting and colonization ability of endophityc diazotrophs from deep water rice. Journal of Biotechnology, v. 91, n. 2, p. 127-141, 2001.

WANG, Y.; MENG, F.; ZHANG, Y. Expression, purification and characterization of recombinant protein tyrosine phosphatase from Thermus thermophilus HB27. Acta Biochimica et Biophysica Sinica, v. 41, n. 8, p. 689-698, 2009.

YASHPHE, J.; CHIKARMANE, H.; IRANZO, M.; HALVORSON, H. O. Phosphatases of Acinetobacter lwoffi. Localization and regulation of synthesis by orthophosphate. Current Microbiology, v. 20, n. 4, p, 273-280, 1990.

ZHANG, Y.; YANG, Z.; HUANG, X.; PENG, J. FEI, X.; GU, S.;XIE, Y.; JI, C.; MAO, Y. Cloning, Expression and Characterization of a Termostable PAP2L2, a New Member of the Type-2 Phosphatidic Acid Phosphatase Family from Geobacillus.

Toebii, T. Bioscience, Biotechnology and Biochemistry, v. 72, n. 12, p. 31343141, 2008

Published

2025-09-04

How to Cite

KINETIC CHARACTERIZATION OF ACID PHOSPHATASE OF Enterobacter sp. ISOLATED FROM ORCHID. (2025). Aurum Editora, 549-563. https://doi.org/10.63330/aurumpub.012-044