

RECRUTANDO MICROBIOMAS PARA UMA AGRICULTURA SUSTENTÁVEL: A BASE DA PRÓXIMA REVOLUÇÃO AGRÍCOLA

https://doi.org/10.63330/aurumpub.015-013

Abraham Guerra

Graduação em Microbiología

Universidade Estadual Paulista "Júlio de Mesquita Filho - Faculdade de Ciências Agrárias e Veterinárias E-mail: abraham.guerra@unesp.br

Nilo Ricardo Corrêa de Mello Júnior

Mestre em Horticultura Irrigada

Universidade Estadual Paulista "Júlio de Mesquita Filho - Faculdade de Ciências Agrárias e Veterinárias E-mail: Nilo.jr@unesp.br

Andrea Cecilia Romero Coronado

Graduação em Microbiología

Universidade Estadual Paulista "Júlio de Mesquita Filho - Faculdade de Ciências Agrárias e Veterinárias E-mail: a.coronado@unesp.br

Anderson Oswaldo Manares Romero

Graduação em Microbiologia

Universidade Estadual Paulista "Júlio de Mesquita Filho - Faculdade de Ciências Agrárias e Veterinárias E-mail: a.manares@unesp.br

Hector Jose Valerio Ardon

Mestre em Microbiologia Agrícola

Universidade Estadual Paulista "Júlio de Mesquita Filho - Faculdade de Ciências Agrárias e Veterinárias E-mail: hectorvalerio68@gmail.com

RESUMO

A agricultura convencional, embora bem-sucedida em aumentar a produtividade, causou uma degradação sistêmica do solo, ameaçando a segurança alimentar global. Este capítulo argumenta que a próxima revolução agrícola será microbiana, exigindo uma mudança de paradigma: da abordagem centrada em produtos químicos para uma que recrute ativamente o microbioma do solo. Inicia-se analisando a degradação física, química e biológica resultante das práticas agrícolas industriais, antes de enquadrar o solo como um ecossistema vivo, contrastando as propriedades de uma matriz saudável e biodiversa com uma degradada e disfuncional. Em seguida, apresenta-se o "kit de bioinsumos" — um conjunto de inoculantes microbianos — como estratégia-chave de intervenção, com uma visão geral de sua cadeia de produção do laboratório ao campo. Por fim, conclui-se que, embora os bioinsumos sejam ferramentas críticas para intervenção, o objetivo de longo prazo é a integração ecológica por meio da agricultura regenerativa, promovendo agroecossistemas resilientes e autossustentáveis, fundamentados em uma parceria renovada com o solo vivo.

Palavras-chave: Degradação do solo; Biotecnologia agrícola; Solo; Biofertilizantes; Bioinsumos; Fertilizantes; Pesticidas.

1 INTRODUÇÃO

O século XX testemunhou uma transformação agrícola sem precedentes. A Revolução Verde, impulsionada por avanços no melhoramento genético de cultivos, uso intensivo de agroquímicos e mecanização, levou a aumentos substanciais na produtividade agrícola, contribuindo para a segurança alimentar global diante de uma população em rápido crescimento e fortalecendo a economia (Pingali, 2012).

Entretanto, as conquistas da agricultura convencional vêm acompanhadas de um pano de fundo ambiental que não pode ser ignorado. O solo deve ser compreendido como um sistema edáfico vivo e dinâmico, integrando a camada superficial, subsolo, biota, águas subterrâneas e atmosfera, mantendo trocas físicas, químicas e biológicas essenciais para a vida (M Roper; V S R Gupta, 2007). Esse sistema complexo regula ciclos de nutrientes e energia, estrutura habitats para incontáveis organismos e conecta diferentes níveis ecológicos, formando a base dos ecossistemas terrestres (Adão; Pádua; Sousa, 2025a; Dixon et al., 2022; Jiang et al., 2024; Mesele et al., 2025; Tarafdar, 2022).

A atividade humana, especialmente a agricultura, intervém nesse sistema, modificando sua estrutura, alterando ciclos biogeoquímicos e influenciando a produtividade. Contudo, a função primordial do solo não é sustentar a agricultura, mas manter o equilíbrio e a resiliência dos ecossistemas, dos quais a produção agrícola é apenas uma de suas múltiplas expressões (Davis; Huggins; Reganold, 2023).

O solo desempenha um papel essencial na geosfera, reforçado por seu componente biológico mais abundante e ativo: os microrganismos, que constituem o motor biológico da vida. Essas comunidades formam um sistema integrado que interage com o ambiente físico e químico do solo, desempenhando funções vitais como decomposição da matéria orgânica, ciclagem de nutrientes e formação de estruturas que sustentam a vida vegetal (Creamer et al., 2022a; David C. Coleman, 2018). Essa rede de organismos e suas interações, englobando diversidade, metabolismo, comunicação e relações ecológicas, constitui o que se conhece como microbioma do solo (Hopkins; Dungait, 2010; Wang; Chi; Song, 2024a; Zhou et al., 2023).

Enquanto a agricultura convencional focou principalmente no manejo das propriedades físicas e químicas do solo, estudos modernos sobre microbioma e biologia do solo demonstram que a fertilidade e a resiliência do solo dependem fundamentalmente de seus componentes biológicos e das interações que estabelecem (Creamer et al., 2022b; Montgomery; Biklé, 2021a).

Historicamente, e em alguns casos ainda hoje, a agricultura convencional negligenciou o impacto ambiental de práticas insustentáveis, cujas consequências agora são evidentes. A degradação do solo, uma crise que afeta aproximadamente 33% das terras do planeta devido à erosão, salinização, compactação e contaminação, ameaça diretamente a segurança alimentar global (Bachman, 2015; Brown, 2015; Kopittke et al., 2025a).

Essa deterioração não apenas reduz a capacidade produtiva dos sistemas agrícolas, mas também contamina corpos d'água, contribui para as mudanças climáticas e impõe altos custos econômicos tanto para agricultores quanto para a sociedade. A perda de solos férteis e a contaminação dos existentes exigem o uso de novas áreas para agricultura, cada vez mais limitadas pela expansão urbana e pelo uso da terra para assentamentos humanos. Em um contexto marcado por crises globais interconectadas — mudanças climáticas, perda de biodiversidade e o desafio de alimentar quase 10 bilhões de pessoas até 2050 (Lam, 2025) — o paradigma agrícola atual mostra-se insustentável.

Portanto, é necessária uma nova revolução agrícola, não baseada na exploração intensiva de recursos, mas na colaboração com a natureza e no fortalecimento dos processos ecológicos que sustentam a vida. Este capítulo propõe que a próxima revolução agrícola será microbiana. Ela envolverá uma profunda mudança de paradigma: passar de um foco exclusivo na química do solo e na produtividade para uma compreensão abrangente de sua biologia e interações com o ecossistema.

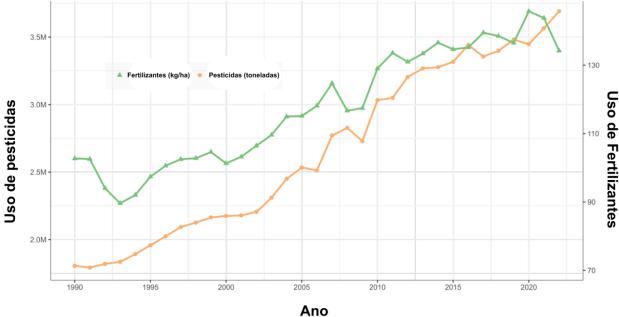
A estratégia central dessa nova era será recrutar ativamente o microbioma do solo, uma vasta força de trabalho invisível composta por bactérias, fungos e outros microrganismos, para restaurar funções naturais enfraquecidas ou deslocadas por práticas industriais intensivas e antropocêntricas. Esse recrutamento vai além da simples aplicação de inoculantes; abrange um conjunto de estratégias, desde intervenções microbianas direcionadas até o redesenho ecológico dos sistemas agrícolas por meio de práticas regenerativas, rotações inteligentes de culturas, cobertura permanente do solo e redução de insumos químicos.

Ao estabelecer parceria com esses aliados microscópicos, podemos reconstruir agroecossistemas não apenas produtivos, mas também resilientes, autorregulados e capazes de sustentar a vida em múltiplos níveis, desde a escala microscópica do solo até a escala global dos ecossistemas. Em outras palavras, essa revolução microbiana não busca dominar a natureza, mas trabalhar com ela, integrando conhecimento científico, inovação tecnológica e práticas agrícolas conscientes para garantir produção alimentar adequada sem comprometer a saúde planetária.

Para sustentar a proposta apresentada, este capítulo está estruturado em quatro seções principais. Inicia com um diagnóstico da crise do solo, demonstrando como práticas agrícolas convencionais, como o uso intensivo de insumos químicos, dependência de monoculturas, variedades de alto rendimento e preparo frequente do solo, degradaram progressivamente os solos. Essas práticas resultaram em poluição, erosão, perda de carbono orgânico, declínio da biodiversidade microbiana e custos econômicos substanciais. A segunda seção enquadra o solo como um ecossistema vivo, contrastando a complexidade e resiliência dos solos saudáveis com a disfunção dos sistemas degradados, enfatizando os papéis críticos desempenhados pelo microbioma do solo, incluindo a ciclagem de nutrientes e a supressão natural de patógenos. Por fim, a última seção introduz o desenvolvimento e a produção do kit de bioinsumos, um conjunto de produtos à

base de microrganismos projetados para restaurar estrategicamente funções essenciais do solo. Todas as intervenções são enquadradas no paradigma mais amplo da agricultura regenerativa, que prioriza o recrutamento microbiano e a resiliência dos ecossistemas como base para um futuro agrícola produtivo, sustentável e impulsionado por microrganismos.

2 O LEGADO DA AGRICULTURA CONVENCIONAL: UM SOLO EXAURIDO


A dinâmica funcional da agricultura convencional, que dominou a produção global de alimentos por mais de meio século, baseia-se em um conjunto de práticas que envolvem o uso intensivo de produtos químicos, como fertilizantes, pesticidas e herbicidas — uma tendência que aumentou de forma constante nas últimas três décadas (Fig. 1) —, uso de maquinário pesado, preparo frequente e profundo do solo, monoculturas em larga escala, variedades de alto rendimento selecionadas para maximizar a produtividade, mas dependentes de insumos externos, irrigação intensiva que altera a disponibilidade hídrica e promove a salinização, além de sistemas de produção orientados principalmente para o rendimento imediato, muitas vezes desconectados da conservação da biodiversidade e do equilíbrio ecológico do solo (Angon et al., 2023; Belete; Yadete, 2023; Betancur-Corredor; Lang; Russell, 2022; Elkot et al., 2024; Karaca; Ince, 2023; Montgomery; Biklé, 2021b).

Embora a agricultura tenha acompanhado a humanidade desde suas origens e se transformado ao longo do tempo, o modelo de alta produtividade consolidado no século XX não surgiu com a intenção de degradar o solo. Pelo contrário, foi concebido como resposta a necessidades urgentes, como fome e crescimento econômico. No entanto, essa abordagem produtivista, concebida sob uma perspectiva antropocêntrica, mostrou-se míope: ofereceu benefícios imediatos em termos de produção, mas ignorou os processos biológicos e microbiológicos que sustentam a fertilidade e a resiliência do solo.

Hoje sabemos que, por décadas, efeitos negativos foram se acumulando, agora expressos em poluição, perda de biodiversidade edáfica e infertilidade progressiva. Segundo a FAO, 90% dos solos do mundo podem estar em risco de degradação até 2050 se essas práticas insustentáveis persistirem. A magnitude do problema é alarmante: aproximadamente 24 bilhões de toneladas de solo fértil são perdidas por erosão a cada ano (Smith et al., 2024), equivalente ao desaparecimento de um campo de futebol de terra produtiva a cada cinco segundos.

Figura 1. Tendências globais no uso de fertilizantes e pesticidas. Evolução anual do uso global de fertilizantes (kg/ha) e pesticidas (toneladas) entre 1990 e 2022. Observa-se uma tendência geral de aumento consistente no uso de ambos os insumos agrícolas ao longo desse período, destacando a intensificação das práticas agrícolas e a crescente dependência de insumos externos na produção global de alimentos.

Essa degradação não é um fenômeno isolado, mas um complexo síndrome de deterioração física, química e biológica interconectada. O cultivo intensivo causou a perda de 25–75% das reservas de carbono orgânico do solo, comprometendo a ciclagem de nutrientes e a capacidade de retenção de água (Lehtinen et al., 2014). Estudos experimentais sugerem que a biodiversidade microbiana e a funcionalidade do solo podem diminuir significativamente em sistemas de monocultura em comparação com sistemas diversificados (Bender; Wagg; Van der Heijden, 2016).

As alterações no solo não apenas causam danos ecológicos, mas também repercutem na produtividade agrícola. A fertilização excessiva com nitrogênio contribui para emissões de óxido nitroso (N₂O), um potente gás de efeito estufa (GONZALEZ-ESTRADA; Camacho Amador, 2017), enquanto o uso indiscriminado de pesticidas altera o microbioma do solo, afetando processos essenciais como a fixação biológica de nitrogênio e a supressão natural de patógenos (Swaine et al., 2025). Essa erosão da saúde do solo constitui uma ameaça crítica à viabilidade de longo prazo dos sistemas alimentares.

Repensar o solo como um ecossistema vivo e adotar práticas regenerativas e agroecológicas baseadas em bioinsumos não é uma opção idealista, mas uma estratégia necessária para garantir a segurança alimentar, a resiliência dos ecossistemas e a estabilidade climática futura.

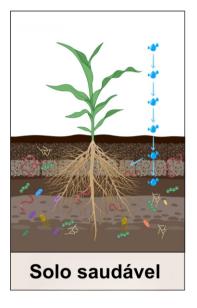
3 AS TRÊS DIMENSÕES DA DEGRADAÇÃO DO SOLO: DECLÍNIO FÍSICO, QUÍMICO E BIOLÓGICO

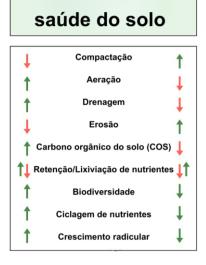
A degradação do solo manifesta-se como um declínio multidimensional em suas propriedades físicas, químicas e biológicas, um contraste claramente ilustrado pelos indicadores-chave que distinguem um solo saudável de um solo degradado (Fig. 2).

Degradação física do solo é um processo complexo no qual a estrutura do solo é comprometida, afetando sua capacidade de sustentar processos ecológicos, hidrológicos e produtivos. No centro desse processo está a desestabilização dos agregados do solo, formações resultantes da interação entre partículas minerais, matéria orgânica como húmus e exsudatos vegetais, água adsorvida e compostos bioativos produzidos por microrganismos. Esses agregados atuam como o "cimento" do solo, fornecendo coesão, resistência às forças erosivas e uma estrutura porosa que regula o fluxo de água, nutrientes e gases (Bedolla-Rivera et al., 2023a; Nunes; Karlen; Moorman, 2020; Weidhuner et al., 2021a, 2021b).

A microbiota do solo desempenha papel central nessa agregação. Bactérias e fungos contribuem para a formação e estabilização dos agregados por meio da decomposição da matéria orgânica e da produção de polímeros extracelulares que ligam partículas minerais. Essa atividade microbiana garante a integridade estrutural, promove a porosidade e facilita a troca eficiente de gases, essencial para a respiração radicular e a atividade bioquímica do solo. A perda dessa comunidade microbiana, como ocorre sob preparo intensivo ou exposição a agroquímicos, desencadeia um enfraquecimento progressivo dos agregados, aumentando a compactação, restringindo o crescimento radicular e reduzindo a capacidade do solo de reter água e oxigênio (Frene; Pandey; Castrillo, 2024; Montgomery; Biklé, 2021c; Pandey; Bennett, 2024a; Weidhuner et al., 2021b).

Do ponto de vista físico, a degradação dos agregados altera a distribuição dos poros, diminuindo os macroporos que facilitam a drenagem e aumentando os microporos que retêm água em forma pouco disponível para as plantas. Isso leva a solos mais densos, menor infiltração e maior suscetibilidade à erosão hídrica e eólica, onde a camada superficial fértil é rapidamente perdida. A combinação de compactação, menor retenção hídrica e maior exposição superficial também eleva a temperatura do solo e altera o microclima da rizosfera, afetando diretamente a atividade biológica e a ciclagem de nutrientes (Bedolla-Rivera et al., 2023b; Correa et al., 2019; Frene; Pandey; Castrillo, 2024; Pandey; Bennett, 2024b).


Portanto, a degradação física não é um fenômeno isolado, mas um processo sinérgico no qual a perda de agregados e o declínio da microbiota geram um ciclo vicioso: solos compactados reduzem a porosidade e a oxigenação, acelerando a erosão e, por fim, diminuindo a fertilidade. Esse processo tem consequências diretas sobre a produtividade agrícola, a capacidade de armazenamento de água no solo e a resiliência dos agroecossistemas a secas, chuvas intensas e mudanças climáticas (Bedolla-Rivera et al., 2023b; Correa et al., 2019; Frene; Pandey; Castrillo, 2024; Pandey; Bennett, 2024a).



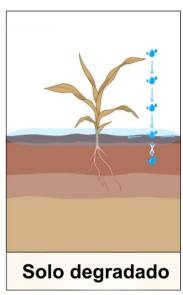

Em escala global, a degradação física é um fator crítico na perda de solos férteis, afetando grandes regiões nos Estados Unidos (32%), África (16%), China (31%), Europa (17%) e Índia (45%), representando uma ameaça significativa à segurança alimentar e à sustentabilidade dos sistemas de cultivo (Borrelli et al., 2017; Guo; Hao; Liu, 2015; Lal, 2003; Singh et al., 2020; Tamene et al., 2017).

Figura 2. Indicadores de saúde do solo entre solo saudável e degradado. Contraste fundamental nas propriedades físicas, químicas e biológicas entre um solo agrícola saudável e um solo degradado. A tabela central detalha indicadores-chave de saúde do solo, usando setas († alto/bom, ↓ baixo/ruim) para comparar seus níveis em ambos os cenários: compactação, aeração, drenagem, erosão, carbono orgânico do solo (COS), retenção/perda de nutrientes, biodiversidade, ciclagem de nutrientes e crescimento radicular. Para o solo saudável, observa-se uma estrutura porosa com agregados estáveis, facilitando a infiltração de água e sustentando uma rica comunidade microbiana. As raízes das plantas se estendem profundamente, indicando boa aeração e acesso a recursos. Em contraste, o solo degradado apresenta estrutura compactada e superfície encrostada que impede a infiltração, levando ao acúmulo superficial de água e ao escoamento. As raízes são rasas, e o solo mostra clara escassez de vida microbiana.

Indicadores de

A degradação química refere-se à deterioração progressiva do equilíbrio interno do solo, caracterizada pela perda das reservas de carbono orgânico e pela alteração das condições que sustentam a fertilidade. O carbono orgânico do solo (COS), componente-chave da matéria orgânica e base da rede biológica do solo, é reduzido pelo preparo intensivo, que acelera sua oxidação e consumo microbiano (Bedolla-Rivera et al., 2023c; Córdova et al., 2025; Joshi et al., 2025; Muhammed et al., 2018; Toth et al., 2025). Esse declínio não apenas diminui a retenção de nutrientes e a estabilidade estrutural, mas também aumenta as emissões de CO₂, diretamente relacionadas às mudanças climáticas.

O uso recorrente de fertilizantes sintéticos, especialmente os nitrogenados, agrava esse problema. Em doses elevadas, eles induzem acidificação, alteram a disponibilidade de micronutrientes e liberam elementos tóxicos como alumínio (Bedolla-Rivera et al., 2023d). Sua baixa eficiência promove a lixiviação de nitrogênio e fósforo para águas subterrâneas e superficiais, desencadeando processos de eutrofização e deterioração dos ecossistemas aquáticos (Bedolla-Rivera et al., 2023d; Montgomery; Biklé, 2021d).

Esse cenário impacta diretamente a vida do solo: comunidades microbianas e micorrízicas são empobrecidas, enquanto contaminantes como metais pesados e hidrocarbonetos, provenientes de fontes industriais e atmosféricas, interrompem processos como fixação de nitrogênio e respiração microbiana (Angon et al., 2024; Bedolla-Rivera et al., 2023d). Como consequência, os agroecossistemas tornam-se menos resilientes a secas, chuvas intensas e pressões externas, forçando os agricultores a depender cada vez mais de insumos externos, o que eleva custos e ameaça a segurança alimentar.

Em resposta, alternativas focadas na restauração do COS e em práticas regenerativas ganham destaque. Estratégias como rotação de culturas, uso de adubos verdes, biochar ou biofertilizantes microbianos mostram-se promissoras para combater a acidificação, melhorar a disponibilidade de nutrientes e reduzir contaminantes. Essas abordagens não apenas restauram a capacidade produtiva, mas também pavimentam o caminho para sistemas agrícolas mais sustentáveis diante das crescentes pressões climáticas e sociais.

A degradação biológica é, talvez, o aspecto mais fundamental e prejudicial, pois representa a perda da vida no solo. As pressões combinadas da monocultura, que oferece uma dieta limitada aos organismos do solo, do preparo intensivo que destrói seus habitats e da aplicação de pesticidas e fungicidas de amplo espectro que os eliminam diretamente, dizimaram a biodiversidade do solo (Bedolla-Rivera et al., 2023d; Tripathi et al., 2020). Isso inclui uma redução drástica na abundância e diversidade de toda a cadeia alimentar edáfica, desde microrganismos responsáveis pela ciclagem de nutrientes até os grandes engenheiros do ecossistema, como as minhocas (Hofer, 2022; Li; Wang; Shao, 2021; Liu et al., 2025; Tripathi et al., 2020).

Somando-se a esse cenário, há um efeito colateral crítico: a degradação física e química atua como gatilho para a degradação biológica, especialmente em nível microbiológico. A compactação e a erosão reduzem o espaço poroso e a disponibilidade de oxigênio, enquanto a perda de carbono orgânico e o uso intensivo de fertilizantes sintéticos em doses descontroladas criam um ambiente tóxico que restringe o crescimento microbiano (Bellabarba et al., 2024; Longepierre et al., 2022). Acidificação, acúmulo de metais pesados e a não especificidade dos biocidas alteram diretamente a composição e funcionalidade da microbiota do solo, limitando processos essenciais como fixação biológica de nitrogênio, decomposição de resíduos orgânicos e supressão natural de patógenos (Alengebawy et al., 2021; Hussain et al., 2009).

Essa perda de funcionalidade biológica é a principal causa dos problemas físicos e químicos: sem os agentes vivos que constroem a estrutura do solo, estabilizam agregados e reciclam nutrientes naturalmente, todo o sistema entra em colapso. Além disso, ocorre uma cascata de impactos que compromete outros níveis da cadeia alimentar do solo, incluindo protozoários, nematoides, microartrópodes e minhocas, enfraquecendo a resiliência dos agroecossistemas a secas, inundações ou pragas e forçando

uma dependência crescente de insumos externos, com consequências econômicas e ecológicas de longo alcance (Yan et al., 2025).

4 QUANTIFICANDO O IMPACTO ECONÔMICO

Os danos ambientais causados pela degradação do solo têm consequências econômicas diretas e crescentes, ameaçando tanto a viabilidade das propriedades agrícolas quanto a saúde econômica regional. A ameaça mais imediata recai sobre os próprios agricultores. À medida que a fertilidade natural do solo declina, os produtores são forçados a compensar aplicando quantidades cada vez maiores de insumos sintéticos caros para manter os rendimentos (Panagos et al., 2018, 2024; Pimentel et al., 1995). Isso cria uma dependência que corrói a rentabilidade das propriedades (Tey; Brindal, 2015). Um estudo emblemático sobre a agricultura do milho nos Estados Unidos revelou que o fertilizante aplicado anualmente não serve para aumentar a produtividade, mas apenas para compensar a perda contínua de fertilidade do solo decorrente da degradação (Jang et al., 2021). Essa aplicação compensatória custa aos produtores de milho norte-americanos mais de meio bilhão de dólares por ano (Jang et al., 2021; Panagos et al., 2018). O problema é agravado pela volatilidade e pelos aumentos acentuados nos preços dos fertilizantes, que subiram dramaticamente nos últimos anos, impondo ainda maior pressão sobre os orçamentos agrícolas (Hernandez; Torero, 2013; Vos et al., 2025).

Além das porteiras, os custos sociais da degradação do solo são uma ordem de magnitude maiores. Essas externalidades fora da fazenda representam custos que não são pagos pelo produtor, mas sim suportados pelo público em geral (Kopittke et al., 2025b; Laamouri; Khattabi, 2025). O mais significativo deles é o dano ambiental causado pelo escoamento de nutrientes. O excesso de nitrogênio e fósforo proveniente dos campos agrícolas é a principal causa da zona hipóxica conhecida como "Zona Morta" no Golfo do México, uma área desprovida de oxigênio e incapaz de sustentar vida marinha, devastando a pesca comercial e as economias costeiras (Li et al., 2025; Restore the Mississippi River Delta, [s.d.]). Os custos de purificação da água para remover nitratos da água potável, a perda de valor recreativo em lagos e rios infestados por florações de algas e os danos aos ecossistemas aquáticos são imensos (Akinnawo, 2023; Amorim; Moura, 2021). Isso revela que o que muitas vezes é considerado produção eficiente de alimentos, quando julgado por indicadores econômicos estreitos ou de curto prazo, é, na verdade, fortemente subsidiado pela degradação do capital natural e pelo esgotamento de recursos públicos.

5 MOTORES MICROBIANOS DO CICLO DE NUTRIENTES

Diante da insustentabilidade econômica de compensar a perda de fertilidade com insumos químicos, torna-se crucial compreender a alternativa natural e autossustentável: o motor microbiano que impulsiona o ciclo de nutrientes. Em qualquer ecossistema natural, os nutrientes são continuamente reciclados,

movendo-se da matéria orgânica para formas que as plantas podem utilizar. O microbioma do solo é o principal motor desses ciclos biogeoquímicos (Basu et al., 2021; Mohanty et al., 2021). Sem essa maquinaria microbiana, nutrientes essenciais permaneceriam bloqueados em formas indisponíveis, tornando o solo infértil.

Uma das funções mais críticas é a fixação de nitrogênio. A atmosfera terrestre é composta por aproximadamente 78% de gás nitrogênio (Zhang; Low; Xiong, 2025), mas essa forma é inerte e inutilizável pelas plantas. Certas bactérias especializadas, conhecidas como diazotróficas, possuem a capacidade única de "fixar" o nitrogênio atmosférico, convertendo-o em amônia disponível para as plantas (Chen et al., 2024a; Hu et al., 2023; Martinez-Feria et al., 2024). Esse processo biológico é o equivalente natural ao processo Haber-Bosch, altamente intensivo em energia, utilizado para produzir fertilizantes nitrogenados sintéticos (Rouwenhorst et al., 2021). As bactérias fixadoras de nitrogênio atuam de duas formas principais: simbioticamente, como as espécies *Rhizobium* e *Bradyrhizobium*, que formam nódulos nas raízes de plantas leguminosas (ex.: soja, ervilhas), e como organismos de vida livre no solo, como *Rhizobia* e *Burkholderia* (Kiprotich et al., 2025; Mahmud et al., 2020; Mowafy et al., 2022). Na relação simbiótica, a planta fornece carboidratos como fonte de energia para a bactéria, e, em troca, recebe um suprimento constante de nitrogênio.

Igualmente importante é a solubilização de fósforo. O fósforo é um nutriente essencial para a transferência de energia e o desenvolvimento radicular das plantas, mas frequentemente é o nutriente mais limitante nos solos agrícolas, pois geralmente está ligado a compostos minerais insolúveis ou retido na matéria orgânica (Alewell et al., 2020; Khan et al., 2023). Um grupo diverso de microrganismos, coletivamente conhecidos como microrganismos solubilizadores de fosfato (PSMs), é capaz de desbloquear esse fósforo indisponível. Bactérias como *Pseudomonas* e *Bacillus*, e fungos como *Aspergillus* e *Rhizopus*, secretam ácidos orgânicos que dissolvem fosfatos minerais e produzem enzimas chamadas fosfatases, que mineralizam o fósforo orgânico, liberando-o na solução do solo para absorção pelas raízes (Bashir et al., 2024; Wang et al., 2023a).

Além do nitrogênio e do fósforo, o microbioma orquestra a ciclagem de praticamente todos os outros nutrientes essenciais. Microrganismos decompõem matéria orgânica complexa, liberando potássio, enxofre, cálcio, magnésio e uma série de micronutrientes em formas iônicas disponíveis para as plantas (Chen et al., 2024b; Wang; Chi; Song, 2024b). Esse processo constante de decomposição e mineralização microbiana é o que constitui a fertilidade natural do solo.

6 O SOLO COMO ECOSSISTEMA: UMA HISTÓRIA DE DOIS CAMPOS

Para compreender a transição para uma agricultura centrada no microbioma, é essencial reformular fundamentalmente nosso conceito de solo. Tradicionalmente, o modelo agrícola industrial tratava o solo

como um meio passivo, apenas um substrato físico para raízes e insumos químicos. A realidade ecológica, no entanto, é que o solo é um sistema dinâmico e vivo (Chen et al., 2024c; Minami, 2021). A diferença entre um solo agrícola vibrante e saudável e um solo exaurido e degradado reside em sua funcionalidade ecológica e complexidade biológica. Entender esse contraste é fundamental para adotar o paradigma do "solo vivo" e repensar a agricultura desde a base.

7 O SOLO: UM SISTEMA VIVO E DINÂMICO

A compreensão científica moderna do solo está encapsulada na definição de saúde do solo como "a capacidade contínua do solo de funcionar como um ecossistema vivo vital que sustenta plantas, animais e seres humanos" (Fausak et al., 2024a; Lehmann et al., 2020a). Essa definição é transformadora. Ela vai além de medidas simples de fertilidade química e reconhece que um solo saudável deve desempenhar um conjunto de funções ecológicas complexas e interconectadas.

Segundo o Departamento de Agricultura dos Estados Unidos, um ecossistema saudável de solo fornece cinco funções essenciais e interligadas (Natural Resources Conservation Service, [s.d.]). Fundamentalmente, ele regula a água, controlando se a chuva infiltra no solo para recarregar aquíferos ou escorre pela superfície, causando erosão. Essa capacidade de manejar a água permite sustentar uma vasta diversidade de vida vegetal e animal e fornecer a estabilidade física necessária para ancorar raízes e suportar estruturas humanas. Além desse papel básico, o solo atua como um processador bioquímico dinâmico. Suas comunidades minerais e microbianas filtram e amortecem poluentes potenciais, degradando-os e desintoxicando-os. Simultaneamente, esse mesmo motor biológico impulsiona a ciclagem de nutrientes essenciais, transformando elementos como carbono, nitrogênio e fósforo para torná-los disponíveis para todo o ecossistema.

8 PROPRIEDADES DEFINIDORAS DE UM SOLO SAUDÁVEL

Um solo vivo e saudável é caracterizado pela interação sinérgica de suas propriedades biológicas, químicas e físicas. Embora existam inúmeros indicadores de saúde do solo, sua natureza interconectada em múltiplos processos frequentemente dificulta uma definição única e clara (Lehmann et al., 2020b). Em sua essência, um solo saudável é definido por sua rica biodiversidade, que pode incluir bilhões de microrganismos, como bactérias, fungos, protozoários e nematoides (Fausak et al., 2024b; Lehmann et al., 2020c). Essa comunidade microscópica é complementada por uma série de organismos maiores, como minhocas, formigas, besouros e outros invertebrados, que juntos formam uma intrincada teia alimentar do solo (Ahmed; Al-Mutairi, 2022a; Hajji et al., 2024; Menta; Remelli, 2020; Wilder et al., 2025; Wu et al., 2015). Esses organismos não são habitantes passivos; são engenheiros ativos do ecossistema. Minhocas e

insetos escavam túneis no solo, criando canais que melhoram a aeração e a infiltração de água, enquanto vastas redes de hifas fúngicas ligam partículas do solo (Ahmed; Al-Mutairi, 2022b).

Essa atividade biológica é alimentada por alta matéria orgânica. A matéria orgânica do solo (MOS) é o material à base de carbono derivado da decomposição de resíduos vegetais e animais, e constitui a base da teia alimentar do solo (De Vries et al., 2013). A MOS atua como um reservatório de liberação lenta de nutrientes essenciais, melhora a capacidade do solo de reter água e nutrientes (capacidade de troca catiônica) e fornece a energia que impulsiona todo o ecossistema do solo (SCHNITZER, 1965; Solly et al., 2020).

A combinação de alta biodiversidade e abundância de matéria orgânica cria uma estrutura física robusta. Isso leva à formação de agregados do solo, outro indicador crítico de saúde (Rillig; Muller; Lehmann, 2017). Um solo bem agregado apresenta textura granulada e é preenchido por uma rede de espaços porosos interconectados (Kravchenko et al., 2015; Yang et al., 2025a). Essa porosidade é essencial: permite que o solo funcione como uma esponja, absorvendo rapidamente a água da chuva e armazenando-a para uso das plantas durante períodos secos (Lipiec et al., 2006; Menon et al., 2020; Robinson et al., 2022). Essa estrutura resiste à compactação e à erosão, tornando toda a paisagem agrícola mais resiliente aos extremos de seca e inundação (Adão; Pádua; Sousa, 2025b; Yang et al., 2025b).

Uma comunidade biológica ativa, matéria orgânica abundante e uma estrutura bem agregada são mutuamente reforçadas por — e, por sua vez, sustentam — um pH equilibrado, níveis ótimos de nutrientes e uma composição mineral rica, entre outros fatores (Lehmann et al., 2020d).

9 A MATRIZ DEGRADADA: UM SISTEMA EM COLAPSO

Em contraste, um solo degradado é um sistema disfuncional, onde essas propriedades vitais foram deterioradas. O sintoma primário dessa disfunção é o colapso da comunidade biológica do solo. Décadas de preparo intensivo, monocultivo e aplicações de agroquímicos dizimaram a comunidade viva do solo (Montgomery; Biklé, 2021e). A teia alimentar do solo entrou em colapso, levando a uma redução dramática tanto na abundância quanto na diversidade de microrganismos, e à ausência de vida visível, como minhocas (Bai et al., 2020; Montgomery; Biklé, 2021e; Wang et al., 2023b). Com seu motor biológico paralisado, o solo perde a capacidade de desempenhar funções essenciais, como ciclagem de nutrientes e supressão de doenças.

Isso leva a um estado de desequilíbrio químico. Com baixa matéria orgânica, o solo perde sua fertilidade natural e capacidade de retenção de nutrientes (Bai et al., 2020; Montgomery; Biklé, 2021e). Torna-se totalmente dependente de insumos externos de fertilizantes sintéticos para sustentar o crescimento das culturas. Isso frequentemente resulta em sobrecarga dos macronutrientes primários — nitrogênio (N), fósforo (P) e potássio (K) — enquanto se torna deficiente em minerais essenciais que não são mais

reciclados pela atividade microbiana. O pH do solo também pode se desequilibrar, variando para extremos ácidos ou alcalinos que bloqueiam ainda mais a disponibilidade de nutrientes para as plantas (Barrow; Hartemink, 2023; Ferrarezi et al., 2022).

A perda de matéria orgânica e atividade biológica leva ao colapso estrutural: sem os "adesivos" biológicos que formam e mantêm agregados, o solo torna-se compactado e denso (James J. Hoorman; João Carlos de Moraes Sá; Randall Reeder, [s.d.]), eliminando espaços porosos e restringindo severamente o movimento de ar, água e raízes (Bodner et al., 2023; Dorau; Luster; Mansfeldt, 2018; Peng et al., 2024). A água já não infiltra de forma eficaz; em vez disso, acumula-se na superfície ou escorre, carregando partículas soltas e nutrientes valiosos em um processo de erosão acelerada (Ju et al., 2024; Peng et al., 2024). O solo torna-se duro e sólido ao toque, e as raízes das plantas lutam para penetrar nas camadas compactadas, limitando seu acesso à água e aos nutrientes (Jobbágy et al., 2023; Ju et al., 2024). Essa matriz degradada é frágil e disfuncional, altamente vulnerável a estresses ambientais e incapaz de sustentar uma agricultura produtiva sem suporte artificial massivo e contínuo.

10 ARQUITETOS DA SAÚDE E RESILIÊNCIA VEGETAL

O papel do microbioma do solo vai muito além de ser um simples fornecedor de nutrientes. Ele funciona como um parceiro dinâmico e interativo das plantas, influenciando diretamente seu crescimento, saúde e capacidade de suportar estresses ambientais. Muitos microrganismos do solo, especialmente aqueles que habitam a rizosfera — a estreita zona de solo que circunda as raízes das plantas (Olanrewaju; Glick; Babalola, 2017a; Poria et al., 2022; Thepbandit; Athinuwat, 2024) — são classificados como bactérias promotoras de crescimento vegetal (PGPB). Esses organismos potencializam o desenvolvimento das plantas por diversos mecanismos, sendo um dos mais importantes a síntese de fitohormônios.

As PGPB podem produzir auxinas, que coordenam o alongamento celular e o crescimento direcional das plantas (Olanrewaju; Glick; Babalola, 2017b; Rolón-Cárdenas et al., 2022); giberelinas, que estimulam o alongamento do caule e a germinação das sementes (Castro-Camba et al., 2022; Olanrewaju; Glick; Babalola, 2017c; Shtin; Dello Ioio; Del Bianco, 2022); e citocininas, que regulam a divisão celular e a formação de brotos (Akhtar et al., 2020; Giron et al., 2013; Olanrewaju; Glick; Babalola, 2017c; Wu et al., 2021).

Esses hormônios derivados de microrganismos atuam como reguladores-chave nas interações das plantas com outros organismos, incluindo microrganismos benéficos e insetos herbívoros. Ao complementar a produção endógena de hormônios pelas plantas, as PGPB podem aumentar significativamente o crescimento, o desenvolvimento e as respostas adaptativas a estresses bióticos e abióticos.

O microbioma também serve como a primeira linha de defesa das plantas contra doenças, fornecendo resistência ao estresse biótico por meio de diversos mecanismos de biocontrole (Ali; Tyagi; Bae, 2023; Du; Han; Tsuda, 2025). Microrganismos benéficos podem competir com organismos patogênicos por espaço e nutrientes na superfície radicular, efetivamente excluindo-os (Ali; Tyagi; Bae, 2023; Chakraborty, 2023). Muitos produzem um arsenal potente de compostos antimicrobianos, incluindo antibióticos e enzimas antifúngicas, que inibem ou eliminam diretamente os patógenos (Ali; Tyagi; Bae, 2023; Das et al., 2021; Roca; Monge-Olivares; Matilla, 2024; Shodmonova et al., 2025). Além disso, a presença de certos microrganismos benéficos na raiz pode desencadear um estado de alerta no sistema imunológico da planta, fenômeno conhecido como Resistência Sistêmica Induzida (ISR) (Pieterse et al., 2014). Isso prepara toda a planta para responder de forma mais rápida e eficaz a futuros ataques de patógenos.

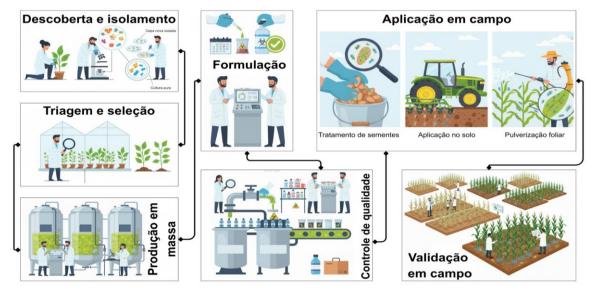
Um microbioma saudável é crucial para conferir tolerância a estresses abióticos, aumentando a resiliência das plantas a desafios ambientais como seca e salinidade (Ali et al., 2023; Ullah et al., 2025a). Entre os contribuintes microbianos mais importantes estão os fungos micorrízicos arbusculares (FMA), que formam associações simbióticas com as raízes da maioria das plantas cultivadas. Esses fungos desenvolvem extensas redes de filamentos microscópicos (hifas) que se estendem muito além do alcance das raízes (Berruti et al., 2016; Ortiz et al., 2015a; Sagar et al., 2021; Ullah et al., 2025b). Essa rede hifal atua como uma extensão altamente eficiente do sistema radicular, aumentando dramaticamente a capacidade da planta de explorar o solo e absorver água e nutrientes imóveis, melhorando assim a tolerância à seca (Ortiz et al., 2015a; Ruiz-Lozano; Azcón, 1995). Outros microrganismos ajudam as plantas a tolerar o estresse salino produzindo compostos osmoprotetores que permitem às células vegetais manter o equilíbrio hídrico em ambientes com alta concentração de sal. Entre eles estão espécies como Bacillus e Pseudomonas, entre outras (Goszcz et al., 2025; Ortiz et al., 2015b).

11 MICROBIOLOGIA APLICADA: O KIT DE BIOINSUMOS

Reconhecer o papel central do microbioma na saúde do solo e na produtividade vegetal catalisou o desenvolvimento de uma nova classe de tecnologias agrícolas: os inoculantes microbianos. Seja sob a forma de biofertilizantes, bioestimulantes ou biopesticidas, esses produtos são formulações contendo microrganismos benéficos vivos específicos. Quando aplicados às sementes, ao solo ou diretamente à planta, atuam como uma intervenção direcionada, reintroduzindo funções microbianas essenciais que foram perdidas em sistemas agrícolas degradados. Representam uma maneira tangível de fornecer uma dose concentrada de microrganismos benéficos diretamente onde são mais necessários, iniciando o processo de restauração ecológica.

A criação desses produtos é um processo sofisticado, orientado pela ciência, que conecta microbiologia, tecnologia de fermentação e agronomia.

12 ESCALANDO MICRORGANISMOS BENÉFICOS: O DESENVOLVIMENTO DO BIOINSUMO


A jornada de um inoculante microbiano, desde um microrganismo promissor em uma placa de Petri até um produto comercial disponível para o agricultor, segue um pipeline rigoroso e multietapas, projetado para garantir eficácia, segurança e estabilidade (Fig. 3). Esse processo transforma um conceito biológico em uma ferramenta agrícola confiável.

- Descoberta e isolamento: O processo começa com a bioprospecção. Cientistas buscam microrganismos candidatos em ambientes diversos, como rizosferas de plantas saudáveis, solos pristinos, água ou até tecidos vegetais. O objetivo é isolar cepas novas de bactérias ou fungos que apresentem características benéficas.
- Triagem e seleção: Milhares de cepas isoladas passam por um rigoroso processo de triagem. Em testes laboratoriais e em casa de vegetação, são avaliadas quanto a funções específicas, como capacidade de fixar nitrogênio, solubilizar fósforo, produzir hormônios de crescimento ou inibir patógenos. Apenas as cepas mais eficazes são selecionadas para desenvolvimento posterior.
- **Produção em massa (fermentação):** A cepa selecionada é então cultivada em grande escala, geralmente por fermentação líquida em biorreatores estéreis de grande porte (Dos Reis et al., 2024; Hernández-Álvarez et al., 2023; Yunus et al., 2022). Os microrganismos recebem um meio nutritivo específico e são cultivados sob condições rigorosamente controladas (temperatura, pH, oxigênio) para atingir alta densidade populacional, frequentemente bilhões de células por mililitro (Dos Reis et al., 2024; Yunus et al., 2022).
- Formulação: A cultura microbiana concentrada é então formulada em um produto estável e de fácil aplicação. Isso envolve misturar os microrganismos vivos com um material carreador. As formulações podem ser líquidas, contendo estabilizantes e protetores celulares para prolongar a vida útil, ou sólidas, como pós misturados com turfa, argila ou biochar (Dos Reis et al., 2024; Figiel et al., 2025; Sharma, 2023; Sifton; Smith; Thomas, 2023; Yunus et al., 2022). A formulação é crítica para proteger os microrganismos contra estresses ambientais e garantir sua sobrevivência até chegar ao campo.
- Controle de qualidade: Durante todo o processo, o controle de qualidade é essencial. Cada lote é testado para verificar a concentração do microrganismo-alvo, garantir que o produto esteja livre de contaminantes e confirmar sua viabilidade e vida útil (Figiel et al., 2025; Prisa;

- Fresco; Spagnuolo, 2023). Essa etapa é crucial para construir a confiança do agricultor e assegurar desempenho consistente.
- Aplicação em campo: O produto final é projetado para aplicação fácil pelo agricultor. Métodos comuns incluem tratamento de sementes, onde as sementes são revestidas com o inoculante antes do plantio; aplicação no solo, diretamente no sulco durante o plantio ou distribuída sobre a área; ou pulverização foliar, onde uma formulação líquida é aplicada nas folhas (Da Silva Medina; Rotondo; Rodríguez, 2024; Dzvene; Chiduza, 2024; Lawal; Babalola, 2014; Prisa; Fresco; Spagnuolo, 2023; Santos; Nogueira; Hungria, 2019).
- Validação em campo: Antes da comercialização completa, o produto formulado passa por extensos testes em campo, em diferentes regiões geográficas, tipos de solo e condições climáticas. Esses ensaios em larga escala validam a eficácia do produto em condições reais de cultivo e fornecem os dados necessários para aprovação regulatória e recomendações agronômicas (Da Silva Medina; Rotondo; Rodríguez, 2024; Ibáñez et al., 2023; Maaz et al., 2025).

Figura 3. Visão geral esquemática do processo de produção e aplicação de bioinsumos microbianos, do laboratório ao campos. Este fluxograma detalha as etapas críticas no desenvolvimento de bioinsumos microbianos para a agricultura. O processo começa com a descoberta e isolamento, onde os cientistas identificam e cultivam cepas microbianas benéficas. Em seguida, ocorre a triagem e seleção por meio de testes laboratoriais e em casa de vegetação para identificar as cepas mais eficazes. As cepas selecionadas avançam para a produção em massa em biorreatores de grande escala, utilizando fermentação líquida para atingir altas densidades celulares. Posteriormente, a formulação converte a cultura microbiana concentrada em produtos estáveis e prontos para uso (líquidos ou sólidos), utilizando materiais carreadores e estabilizantes. A etapa de controle de qualidade garante a viabilidade, pureza e concentração dos microrganismos em cada lote. Finalmente, os bioinsumos são preparados para aplicação em campo por métodos como tratamento de sementes, aplicação direta no solo ou pulverização foliar, e sua eficácia é rigorosamente validada na fase de validação em campo, por meio de ensaios controlados sob condições diversas antes da comercialização.

13 CULTIVANDO UM FUTURO MICROBIANO

A trajetória da agricultura moderna está se curvando de volta às suas raízes biológicas. O paradigma industrial, com sua dependência da força química, levou nossos agroecossistemas ao limite, revelando uma falha sistêmica que exige uma solução igualmente sistêmica. Este capítulo argumentou que a solução está sob nossos pés, dentro do mundo complexo e vivo do microbioma do solo. O caminho para uma agricultura sustentável, resiliente e produtiva não é intensificar ainda mais nossas intervenções químicas, mas aprender a recrutar a vasta, poderosa e eficiente força de trabalho microbiana que tem sustentado os ecossistemas planetários ao longo do tempo.

Esse recrutamento é uma estratégia dupla, uma jornada da intervenção à integração. Nos solos exauridos que são o legado da agricultura industrial, os bioinsumos direcionados — os biofertilizantes, biopesticidas e bioestimulantes do crescente mercado de biológicos agrícolas — servem como ferramentas essenciais de intervenção. Eles são os catalisadores ecológicos que reintroduzem funções críticas e reativam o motor biológico adormecido do solo. O rápido crescimento do mercado global de bioinsumos, impulsionado pela demanda dos consumidores, pela pressão regulatória e pelo reconhecimento crescente de seus benefícios econômicos e ambientais, sinaliza que essa fase da revolução microbiana já está em andamento.

No entanto, essas ferramentas poderosas são, em última análise, um meio para um fim maior. A estratégia de longo prazo, incorporada nos princípios da agricultura regenerativa, é a integração. Ao minimizar a perturbação do solo, manter sua cobertura, maximizar a biodiversidade e preservar raízes vivas, podemos criar agroecossistemas projetados para serem habitats ideais para a vida microbiana. Essas práticas transformam o papel do agricultor: de aplicador de produtos químicos para cultivador de ecossistemas — alguém que foca não em alimentar diretamente a planta, mas em nutrir a vida do solo que, por sua vez, sustenta a planta. Essa abordagem cria um ciclo positivo de regeneração, onde melhorar a vida do solo leva a uma melhor estrutura, maior ciclagem de nutrientes e água, e maior resiliência a pragas, doenças e choques climáticos, construindo, por fim, uma fazenda autossustentável e autorregulada. Essa transição de um futuro químico para um futuro microbiano exige um esforço conjunto de todos os setores.

A comunidade científica deve acelerar sua exploração da fronteira do solo. Precisamos de pesquisas mais profundas sobre a eficácia de consórcios microbianos multiespécies, os diálogos químicos complexos que governam as interações planta-microrganismo e o desenvolvimento da próxima geração de bioinsumos. Crucialmente, esse trabalho em laboratório deve ser complementado por ensaios de campo de longo prazo, em nível sistêmico, que avaliem os efeitos sinérgicos dos bioinsumos e das práticas regenerativas ao longo do tempo.

Os governos devem criar um ambiente favorável para essa transição. Isso requer políticas inspiradas no sucesso de nações como o Brasil: investimento público sustentado na agricultura, criação de vias

regulatórias específicas e simplificadas para bioinsumos que reconheçam sua natureza biológica única, e implementação de incentivos financeiros — como subsídios, créditos fiscais ou mercados robustos de carbono — que recompensem os agricultores pelos bens públicos que fornecem ao adotar práticas regenerativas e construir saúde do solo. Os formuladores de políticas também devem reconhecer os profundos co-benefícios dessa mudança para a segurança nacional e a saúde pública, desde a soberania alimentar até a mitigação da crise da resistência a antibióticos.

A mudança mais fundamental deve ocorrer nos campos e nas mentes de agricultores, agrônomos e consultores agrícolas. A transição exige ir além de uma mentalidade de problemas isolados e soluções milagrosas. Requer abraçar a complexidade e adotar um novo paradigma: "alimentar o solo" com uma dieta diversificada de carbono por meio das plantas e, assim, capacitar a força de trabalho microbiana do solo a realizar o trabalho pesado de fornecimento de nutrientes e proteção das plantas.

Cultivar esse futuro microbiano é um dos grandes desafios e oportunidades do século XXI. Ele promete uma agricultura que não seja fonte de degradação ambiental, mas um motor poderoso de regeneração ecológica. Oferece um caminho para produzir alimentos abundantes e nutritivos enquanto simultaneamente constrói solo, purifica água, protege a biodiversidade e sequestra carbono atmosférico. A base para esse futuro não é um novo produto químico ou uma nova máquina, mas uma parceria renovada com a força mais antiga e poderosa da agricultura: o solo vivo.

REFERÊNCIAS

ADÃO, Filipe; PÁDUA, Luís; SOUSA, Joaquim J. Evaluating Soil Degradation in Agricultural Soil with Ground-Penetrating Radar: A Systematic Review of Applications and Challenges [Avaliando a degradação do solo agrícola com radar de penetração no solo: revisão sistemática de aplicações e desafios]. Agriculture, v. 15, n. 8, p. 852, 15 abr. 2025a.

ADÃO, Filipe; PÁDUA, Luís; SOUSA, Joaquim J. Evaluating Soil Degradation in Agricultural Soil with Ground-Penetrating Radar: A Systematic Review of Applications and Challenges [Avaliando a degradação do solo agrícola com radar de penetração no solo: revisão sistemática de aplicações e desafios]. Agriculture, v. 15, n. 8, p. 852, 15 abr. 2025b.

AHMED, Nazeer; AL-MUTAIRI, Khalid Awadh. Earthworms Effect on Microbial Population and Soil Fertility as Well as Their Interaction with Agriculture Practices [Efeito das minhocas na população microbiana e na fertilidade do solo e sua interação com práticas agrícolas]. Sustainability, v. 14, n. 13, p. 7803, 27 jun. 2022a.

AHMED, Nazeer; AL-MUTAIRI, Khalid Awadh. Earthworms Effect on Microbial Population and Soil Fertility as Well as Their Interaction with Agriculture Practices [Efeito das minhocas na população microbiana e na fertilidade do solo e sua interação com práticas agrícolas]. Sustainability, v. 14, n. 13, p. 7803, 27 jun. 2022b.

AKHTAR, Saqib Saleem et al. Role of Cytokinins for Interactions of Plants With Microbial Pathogens and Pest Insects [Papel das citocininas nas interações de plantas com patógenos microbianos e insetos praga]. Frontiers in Plant Science, v. 10, 19 fev. 2020.

AKINNAWO, Solomon Oluwaseun. Eutrophication: Causes, consequences, physical, chemical and biological techniques for mitigation strategies [Eutrofização: causas, consequências e técnicas físicas, químicas e biológicas para estratégias de mitigação]. Environmental Challenges, v. 12, p. 100733, ago. 2023.

ALENGEBAWY, Ahmed et al. Heavy Metals and Pesticides Toxicity in Agricultural Soil and Plants: Ecological Risks and Human Health Implications [Toxicidade de metais pesados e pesticidas em solo e plantas agrícolas: riscos ecológicos e implicações para a saúde humana]. Toxics, v. 9, n. 3, p. 42, 25 fev. 2021.

ALEWELL, Christine et al. Global phosphorus shortage will be aggravated by soil erosion [A escassez global de fósforo será agravada pela erosão do solo]. Nature Communications, v. 11, n. 1, p. 4546, 11 set. 2020.

ALI, Sajad et al. Plant beneficial microbiome a boon for improving multiple stress tolerance in plants [Microbioma benéfico das plantas: uma bênção para melhorar a tolerância a múltiplos estresses nas plantas]. Frontiers in Plant Science, v. 14, 11 set. 2023.

ALI, Sajad; TYAGI, Anshika; BAE, Hanhong. Plant Microbiome: An Ocean of Possibilities for Improving Disease Resistance in Plants [Microbioma de plantas: um oceano de possibilidades para melhorar a resistência a doenças em plantas]. Microorganisms, v. 11, n. 2, p. 392, 3 fev. 2023.

AMORIM, Cihelio Alves; MOURA, Ariadne do Nascimento. Ecological impacts of freshwater algal blooms on water quality, plankton biodiversity, structure, and ecosystem functioning [Impactos ecológicos

das florescências algais de água doce na qualidade da água, biodiversidade do plâncton, estrutura e funcionamento do ecossistema]. Science of The Total Environment, v. 758, p. 143605, mar. 2021.

ANGON, Prodipto Bishnu et al. An Overview of the Impact of Tillage and Cropping Systems on Soil Health in Agricultural Practices [Visão geral do impacto do preparo do solo e dos sistemas de cultivo na saúde do solo em práticas agrícolas]. Advances in Agriculture, v. 2023, p. 1–14, 27 maio 2023.

ANGON, Prodipto Bishnu et al. Sources, effects and present perspectives of heavy metals contamination: Soil, plants and human food chain [Fontes, efeitos e perspectivas atuais da contaminação por metais pesados: solo, plantas e cadeia alimentar humana]. Heliyon, v. 10, n. 7, p. e28357, abr. 2024.

BACHMAN, Kenneth L. Can We Produce Enough Food? [Podemos produzir alimento suficiente?]. In: [S.l.: S.n.]. p. 42–48.

BAI, Yong-Chao et al. Soil Chemical and Microbiological Properties Are Changed by Long-Term Chemical Fertilizers That Limit Ecosystem Functioning [Propriedades químicas e microbiológicas do solo são alteradas por fertilizantes químicos de longo prazo que limitam o funcionamento do ecossistema]. Microorganisms, v. 8, n. 5, p. 694, 8 maio 2020.

BARROW, N. J.; HARTEMINK, Alfred E. The effects of pH on nutrient availability depend on both soils and plants [Os efeitos do pH na disponibilidade de nutrientes dependem tanto do solo quanto das plantas]. Plant and Soil, v. 487, n. 1–2, p. 21–37, 7 jun. 2023.

BASHIR, Zaffar et al. Phosphorus Solubilizing Microorganisms: An Eco-Friendly Approach for Sustainable Plant Health and Bioremediation [Micro-organismos solubilizadores de fósforo: uma abordagem ecológica para saúde vegetal sustentável e biorremediação]. Journal of Soil Science and Plant Nutrition, v. 24, n. 4, p. 6838–6854, 18 dez. 2024.

BASU, Sahana et al. Role of soil microbes in biogeochemical cycle for enhancing soil fertility [Papel dos microrganismos do solo no ciclo biogeoquímico para aumento da fertilidade do solo]. In: New and Future Developments in Microbial Biotechnology and Bioengineering. [S.l.]: Elsevier, 2021. p. 149–157.

BEDOLLA-RIVERA, Héctor Iván et al. Analyzing the Impact of Intensive Agriculture on Soil Quality: A Systematic Review and Global Meta-Analysis of Quality Indexes [Analisando o impacto da agricultura intensiva na qualidade do solo: revisão sistemática e meta-análise global de índices de qualidade]. Agronomy, v. 13, n. 8, p. 2166, 18 ago. 2023a.

BEDOLLA-RIVERA, Héctor Iván et al. Analyzing the Impact of Intensive Agriculture on Soil Quality: A Systematic Review and Global Meta-Analysis of Quality Indexes [Analisando o impacto da agricultura intensiva na qualidade do solo: revisão sistemática e meta-análise global de índices de qualidade]. Agronomy, v. 13, n. 8, p. 2166, 18 ago. 2023b.

BEDOLLA-RIVERA, Héctor Iván et al. Analyzing the Impact of Intensive Agriculture on Soil Quality: A Systematic Review and Global Meta-Analysis of Quality Indexes [Analisando o impacto da agricultura intensiva na qualidade do solo: revisão sistemática e meta-análise global de índices de qualidade]. Agronomy, v. 13, n. 8, p. 2166, 18 ago. 2023c.

BEDOLLA-RIVERA, Héctor Iván et al. Analyzing the Impact of Intensive Agriculture on Soil Quality: A Systematic Review and Global Meta-Analysis of Quality Indexes [Analisando o impacto da agricultura

intensiva na qualidade do solo: revisão sistemática e meta-análise global de índices de qualidade]. Agronomy, v. 13, n. 8, p. 2166, 18 ago. 2023d.

BELETE, Tegegn; YADETE, Eshetu. Effect of Mono Cropping on Soil Health and Fertility Management for Sustainable Agriculture Practices: A Review [Efeito do monocultivo na saúde do solo e gestão da fertilidade para práticas agrícolas sustentáveis: uma revisão]. Journal of Plant Sciences, 30 nov. 2023.

BELLABARBA, Agnese et al. Short-term machinery impact on microbial activity and diversity in a compacted forest soil [Impacto de curto prazo de máquinas na atividade microbiana e diversidade em solo florestal compactado]. Applied Soil Ecology, v. 203, p. 105646, nov. 2024.

BENDER, S. Franz; WAGG, Cameron; VAN DER HEIJDEN, Marcel G. A. An Underground Revolution: Biodiversity and Soil Ecological Engineering for Agricultural Sustainability [Uma revolução subterrânea: biodiversidade e engenharia ecológica do solo para sustentabilidade agrícola]. Trends in Ecology & Evolution, v. 31, n. 6, p. 440–452, jun. 2016.

BERRUTI, Andrea et al. Arbuscular Mycorrhizal Fungi as Natural Biofertilizers: Let's Benefit from Past Successes [Fungos micorrízicos arbusculares como biofertilizantes naturais: vamos aproveitar sucessos passados]. Frontiers in Microbiology, v. 6, 19 jan. 2016.

BETANCUR-CORREDOR, Bibiana; LANG, Birgit; RUSSELL, David J. Reducing tillage intensity benefits the soil micro- and mesofauna in a global meta-analysis [Reduzir a intensidade do preparo do solo beneficia a micro- e mesofauna do solo em uma meta-análise global]. European Journal of Soil Science, v. 73, n. 6, 5 nov. 2022.

BODNER, Gernot et al. Managing the pore system: Regenerating the functional pore spaces of natural soils by soil-health oriented farming systems [Gerenciando o sistema de poros: regenerando os espaços porosos funcionais de solos naturais por sistemas agrícolas orientados à saúde do solo]. Soil and Tillage Research, v. 234, p. 105862, out. 2023.

BORRELLI, Pasquale et al. An assessment of the global impact of 21st century land use change on soil erosion [Avaliação do impacto global da mudança de uso da terra do século XXI na erosão do solo]. Nature Communications, v. 8, n. 1, p. 2013, 8 dez. 2017.

BROWN, Lester R. Population Growth, Food Needs and Production Problems [Crescimento populacional, necessidades alimentares e problemas de produção]. In: [S.l.: S.n.]. p. 3–22.

CASTRO-CAMBA, Ricardo et al. Plant Development and Crop Yield: The Role of Gibberellins [Desenvolvimento vegetal e produtividade: o papel das giberelinas]. Plants, v. 11, n. 19, p. 2650, 9 out. 2022.

CHAKRABORTY, Joydeep. Microbiota and the plant immune system work together to defend against pathogens [A microbiota e o sistema imunológico da planta trabalham juntos para defender contra patógenos]. Archives of Microbiology, v. 205, n. 10, p. 347, 1 out. 2023.

CHEN, Qingxia et al. Soil Microorganisms: Their Role in Enhancing Crop Nutrition and Health [Microrganismos do solo: seu papel no aprimoramento da nutrição e saúde das culturas]. Diversity, v. 16, n. 12, p. 734, 29 nov. 2024a.

CHEN, Qingxia et al. Soil Microorganisms: Their Role in Enhancing Crop Nutrition and Health [Microrganismos do solo: seu papel no aprimoramento da nutrição e saúde das culturas]. Diversity, v. 16, n. 12, p. 734, 29 nov. 2024b.

CHEN, Qingxia et al. Soil Microorganisms: Their Role in Enhancing Crop Nutrition and Health [Microrganismos do solo: seu papel no aprimoramento da nutrição e saúde das culturas]. Diversity, v. 16, n. 12, p. 734, 29 nov. 2024c.

CÓRDOVA, S. Carolina et al. Soil carbon change in intensive agriculture after 25 years of conservation management [Mudança de carbono no solo em agricultura intensiva após 25 anos de manejo conservacionista]. Geoderma, v. 453, p. 117133, jan. 2025.

CORREA, José et al. Soil compaction and the architectural plasticity of root systems [Compactação do solo e a plasticidade arquitetural dos sistemas radiculares]. Journal of Experimental Botany, v. 70, n. 21, p. 6019–6034, 18 nov. 2019.

CREAMER, R. E. et al. The life of soils: Integrating the who and how of multifunctionality [A vida dos solos: integrando o quem e o como da multifuncionalidade]. Soil Biology and Biochemistry, v. 166, p. 108561, mar. 2022a.

CREAMER, R. E. et al. The life of soils: Integrating the who and how of multifunctionality [A vida dos solos: integrando o quem e o como da multifuncionalidade]. Soil Biology and Biochemistry, v. 166, p. 108561, mar. 2022b.

DA SILVA MEDINA, Gabriel; ROTONDO, Rosana; RODRÍGUEZ, Gustavo Rubén. Innovations in Agricultural Bio-Inputs: Commercial Products Developed in Argentina and Brazil [Inovações em bioinsumos agrícolas: produtos comerciais desenvolvidos na Argentina e no Brasil]. Sustainability, v. 16, n. 7, p. 2763, 27 mar. 2024.

DAS, Joyati et al. Enzymatic and non-enzymatic functional attributes of plant microbiome [Atributos funcionais enzimáticos e não enzimáticos do microbioma de plantas]. Current Opinion in Biotechnology, v. 69, p. 162–171, jun. 2021.

DAVID C. COLEMAN, Mac A. Callaham, Jr. and D. A. Crossley, Jr. Fundamentals of Soil Ecology [Fundamentos da ecologia do solo]. [S.l.]: Elsevier, 2018.

DAVIS, Alexandra G.; HUGGINS, David R.; REGANOLD, John P. Linking soil health and ecological resilience to achieve agricultural sustainability [Ligando saúde do solo e resiliência ecológica para alcançar sustentabilidade agrícola]. Frontiers in Ecology and the Environment, v. 21, n. 3, p. 131–139, 5 abr. 2023.

DE VRIES, Franciska T. et al. Soil food web properties explain ecosystem services across European land use systems [Propriedades da teia alimentar do solo explicam serviços ecossistêmicos em sistemas de uso da terra europeus]. Proceedings of the National Academy of Sciences, v. 110, n. 35, p. 14296–14301, 27 ago. 2013.

DIXON, Mary et al. Impacts of the Green Revolution on Rhizosphere Microbiology Related to Nutrient Acquisition [Impactos da Revolução Verde na microbiologia da rizosfera relacionados à aquisição de nutrientes]. Applied Microbiology, v. 2, n. 4, p. 992–1003, 30 nov. 2022.

DORAU, K.; LUSTER, J.; MANSFELDT, T. Soil aeration: the relation between air-filled pore volume and redox potential [Aeração do solo: a relação entre volume de poros preenchidos por ar e potencial redox]. European Journal of Soil Science, v. 69, n. 6, p. 1035–1043, 19 nov. 2018.

DOS REIS, Guilherme Anacleto et al. Comprehensive Review of Microbial Inoculants: Agricultural Applications, Technology Trends in Patents, and Regulatory Frameworks [Revisão abrangente de inoculantes microbianos: aplicações agrícolas, tendências tecnológicas em patentes e marcos regulatórios]. Sustainability, v. 16, n. 19, p. 8720, 9 out. 2024.

DU, Yulin; HAN, Xiaowei; TSUDA, Kenichi. Microbiome-mediated plant disease resistance: recent advances and future directions [Resistência a doenças mediada pelo microbioma: avanços recentes e direções futuras]. Journal of General Plant Pathology, v. 91, n. 1, p. 1–17, 17 jan. 2025.

DZVENE, Admire R.; CHIDUZA, Cornelius. Application of Biofertilizers for Enhancing Beneficial Microbiomes in Push–Pull Cropping Systems: A Review [Aplicação de biofertilizantes para melhorar microbiomas benéficos em sistemas de cultivo push–pull: uma revisão]. Bacteria, v. 3, n. 4, p. 271–286, 25 set. 2024.

ELKOT, Ahmed Fawzy et al. Yield Responses to Total Water Input from Irrigation and Rainfall in Six Wheat Cultivars Under Different Climatic Zones in Egypt [Respostas de rendimento ao total de água de irrigação e chuva em seis cultivares de trigo sob diferentes zonas climáticas no Egito]. Agronomy, v. 14, n. 12, p. 3057, 21 dez. 2024.

FAUSAK, Lewis K. et al. Soil health – a perspective [Saúde do solo — uma perspectiva]. Frontiers in Soil Science, v. 4, 9 out. 2024a.

FAUSAK, Lewis K. et al. Soil health – a perspective [Saúde do solo — uma perspectiva]. Frontiers in Soil Science, v. 4, 9 out. 2024b.

FERRAREZI, Rhuanito Soranz et al. Substrate pH Influences the Nutrient Absorption and Rhizosphere Microbiome of Huanglongbing-Affected Grapefruit Plants [O pH do substrato influencia a absorção de nutrientes e o microbioma da rizosfera em plantas de toranja afetadas por Huanglongbing]. Frontiers in Plant Science, v. 13, 13 maio 2022.

FIGIEL, Sylwia et al. Microbially Enhanced Biofertilizers: Technologies, Mechanisms of Action, and Agricultural Applications [Biofertilizantes microbiais aprimorados: tecnologias, mecanismos de ação e aplicações agrícolas]. Agronomy, v. 15, n. 5, p. 1191, 15 maio 2025.

FRENE, Juan P.; PANDEY, Bipin K.; CASTRILLO, Gabriel. Under pressure: elucidating soil compaction and its effect on soil functions [Sob pressão: elucidação da compactação do solo e seu efeito nas funções do solo]. Plant and Soil, 1 mar. 2024.

GIRON, David et al. Cytokinins as key regulators in plant–microbe–insect interactions: connecting plant growth and defence [Citocininas como reguladores chave nas interações planta–microorganismo–inseto: conectando crescimento e defesa da planta]. Functional Ecology, v. 27, n. 3, p. 599–609, 12 jun. 2013.

GONZALEZ-ESTRADA, ADRIAN; CAMACHO AMADOR, Maricela. Emisión de gases de efecto invernadero de la fertilización nitrogenada en México [Emissão de gases de efeito estufa pela fertilização nitrogenada no México]. Revista Mexicana de Ciencias Agrícolas, v. 8, n. 8, p. 1733–1745, 17 dez. 2017.

GOSZCZ, Aleksandra et al. Bacterial osmoprotectants—a way to survive in saline conditions and potential crop allies [Osmoprotetores bacterianos — uma forma de sobreviver em condições salinas e aliados potenciais das culturas]. FEMS Microbiology Reviews, v. 49, 14 jan. 2025.

GUO, Qiankun; HAO, Yanfang; LIU, Baoyuan. Rates of soil erosion in China: A study based on runoff plot data [Taxas de erosão do solo na China: estudo baseado em dados de parcelas de escoamento]. CATENA, v. 124, p. 68–76, jan. 2015.

HAJII, Hasnae et al. Contribution of Dung Beetles to the Enrichment of Soil with Organic Matter and Nutrients under Controlled Conditions [Contribuição de escaravelhos coprófagos para o enriquecimento do solo com matéria orgânica e nutrientes em condições controladas]. Diversity, v. 16, n. 8, p. 462, 2 ago. 2024.

HERNANDEZ, Manuel A.; TORERO, Maximo. Market concentration and pricing behavior in the fertilizer industry: a global approach [Concentração de mercado e comportamento de precificação na indústria de fertilizantes: uma abordagem global]. Agricultural Economics, v. 44, n. 6, p. 723–734, 24 nov. 2013.

HERNÁNDEZ-ÁLVAREZ, Cristóbal et al. A study of microbial diversity in a biofertilizer consortium [Estudo da diversidade microbiana em um consórcio de biofertilizantes]. PLOS ONE, v. 18, n. 8, p. e0286285, 24 ago. 2023.

HOFER, Ursula. Microbiome shift in degrading soil [Mudança do microbioma em solo degradante]. Nature Reviews Microbiology, v. 20, n. 7, p. 382–382, 20 jul. 2022.

HOPKINS, David W.; DUNGAIT, Jennifer A. J. Soil Microbiology and Nutrient Cycling [Microbiologia do solo e ciclagem de nutrientes]. In: Soil Microbiology and Sustainable Crop Production. Dordrecht: Springer Netherlands, 2010. p. 59–80.

HU, Wenbo et al. Enhancement of nitrogen fixation and diazotrophs by long-term polychlorinated biphenyl contamination in paddy soil [Aumento da fixação de nitrogênio e de diazótróficos por contaminação de longo prazo por bifenilos policlorados em solo de arrozal]. Journal of Hazardous Materials, v. 446, p. 130697, mar. 2023.

HUSSAIN, Sarfraz et al. Chapter 5 Impact of Pesticides on Soil Microbial Diversity, Enzymes, and Biochemical Reactions [Capítulo 5 Impacto dos pesticidas na diversidade microbiana do solo, enzimas e reações bioquímicas]. In: [S.l.: S.n.]. p. 159–200.

IBÁÑEZ, Ana et al. From Lab to Field: Biofertilizers in the 21st Century [Do laboratório ao campo: biofertilizantes no século XXI]. Horticulturae, v. 9, n. 12, p. 1306, 5 dez. 2023.

JAMES J. HOORMAN; JOÃO CARLOS DE MORAES SÁ; RANDALL REEDER. 4 Crops & Soils magazine | [Crops & Soils magazine]. [S.l.: S.n.]. Available at: http://ohioline.osu.edu/sagfact/pdf/0010.pdf.

JANG, W. S. et al. The Hidden Costs of Land Degradation in US Maize Agriculture [Os custos ocultos da degradação da terra na agricultura do milho dos EUA]. Earth's Future, v. 9, n. 2, 12 fev. 2021.

JIANG, Kang et al. Global land degradation hotspots based on multiple methods and indicators [Hotspots globais de degradação da terra baseados em múltiplos métodos e indicadores]. Ecological Indicators, v. 158, p. 111462, jan. 2024.

JOBBÁGY, Ján et al. Evaluation of Soil Infiltration Variability in Compacted and Uncompacted Soil Using Two Devices [Avaliação da variabilidade da infiltração do solo em solo compactado usando dois dispositivos]. Water, v. 15, n. 10, p. 1918, 18 maio 2023.

JOSHI, Deepak R. et al. Tillage intensity reductions when combined with yield increases may slow soil carbon saturation in the central United States [Reduções da intensidade do preparo do solo combinadas com aumentos de rendimento podem retardar a saturação de carbono do solo nos EUA centrais]. Scientific Reports, v. 15, n. 1, p. 10697, 28 mar. 2025.

JU, Xinni et al. Impacts of the soil pore structure on infiltration characteristics at the profile scale in the red soil region [Impactos da estrutura de poros do solo nas características de infiltração em escala de perfil na região de solo vermelho]. Soil and Tillage Research, v. 236, p. 105922, fev. 2024.

KARACA, Mehmet; INCE, Ayse Gul. Revisiting sustainable systems and methods in agriculture [Revisitando sistemas e métodos sustentáveis na agricultura]. In: Sustainable Agriculture and the Environment. [S.l.]: Elsevier, 2023. p. 195–246.

KHAN, Fahad et al. Phosphorus Plays Key Roles in Regulating Plants' Physiological Responses to Abiotic Stresses [O fósforo desempenha papéis-chave na regulação das respostas fisiológicas das plantas a estresses abióticos]. Plants, v. 12, n. 15, p. 2861, 3 ago. 2023.

KIPROTICH, Kelvin et al. Unveiling the roles, mechanisms and prospects of soil microbial communities in sustainable agriculture [Revelando papéis, mecanismos e perspectivas das comunidades microbianas do solo na agricultura sustentável]. Discover Soil, v. 2, n. 1, p. 10, 17 fev. 2025.

KOPITTKE, Peter M. et al. Soil degradation: An integrated model of the causes and drivers [Degradação do solo: um modelo integrado das causas e vetores]. International Soil and Water Conservation Research, v. 13, n. 4, p. 744–755, dez. 2025a.

KOPITTKE, Peter M. et al. Soil degradation: An integrated model of the causes and drivers [Degradação do solo: um modelo integrado das causas e vetores]. International Soil and Water Conservation Research, v. 13, n. 4, p. 744–755, dez. 2025b.

KRAVCHENKO, Alexandra N. et al. Protection of soil carbon within macro-aggregates depends on intra-aggregate pore characteristics [Proteção do carbono do solo dentro de macroagregados depende das características dos poros intra-agregados]. Scientific Reports, v. 5, n. 1, p. 16261, 6 nov. 2015.

LAAMOURI, Anas; KHATTABI, Abdellatif. Estimating the Economic Cost of Land Degradation and Desertification in Morocco [Estimando o custo econômico da degradação e desertificação da terra no Marrocos]. Land, v. 14, n. 4, p. 837, 11 abr. 2025.

LAL, R. Soil erosion and the global carbon budget [Erosão do solo e o balanço global de carbono]. Environment International, v. 29, n. 4, p. 437–450, jul. 2003.

LAM, David. The Next 2 Billion: Can the World Support 10 Billion People? [Os próximos 2 bilhões: o mundo pode suportar 10 bilhões de pessoas?]. Population and Development Review, v. 51, n. 1, p. 63–102, 6 mar. 2025.

LAWAL, Tunde Ezekiel; BABALOLA, Olubukola Oluranti. Relevance of Biofertilizers to Agriculture [Relevância dos biofertilizantes para a agricultura]. Journal of Human Ecology, v. 47, n. 1, p. 35–43, 24 jul. 2014.

LEHMANN, Johannes et al. The concept and future prospects of soil health [O conceito e perspectivas futuras da saúde do solo]. Nature Reviews Earth & Environment, v. 1, n. 10, p. 544–553, 25 ago. 2020a.

LEHMANN, Johannes et al. The concept and future prospects of soil health [O conceito e perspectivas futuras da saúde do solo]. Nature Reviews Earth & Environment, v. 1, n. 10, p. 544–553, 25 ago. 2020b.

LEHMANN, Johannes et al. The concept and future prospects of soil health [O conceito e perspectivas futuras da saúde do solo]. Nature Reviews Earth & Environment, v. 1, n. 10, p. 544–553, 25 ago. 2020c.

LEHMANN, Johannes et al. The concept and future prospects of soil health [O conceito e perspectivas futuras da saúde do solo]. Nature Reviews Earth & Environment, v. 1, n. 10, p. 544–553, 25 ago. 2020d.

LEHTINEN, T. et al. Effect of crop residue incorporation on soil organic carbon and greenhouse gas emissions in European agricultural soils [Efeito da incorporação de resíduos de cultura no carbono orgânico do solo e nas emissões de gases de efeito estufa em solos agrícolas europeus]. Soil Use and Management, v. 30, n. 4, p. 524–538, 10 dez. 2014.

LI, Yanpei; WANG, Jiao; SHAO, Ming'an. Assessment of earthworms as an indicator of soil degradation: A case-study on loess soils [Avaliação de minhocas como indicador de degradação do solo: estudo de caso em solos de loess]. Land Degradation & Development, v. 32, n. 8, p. 2606–2617, 15 maio 2021.

LI, Yingjie et al. Spatiotemporal dynamics of coastal dead zones in the Gulf of Mexico over 20 years using remote sensing [Dinâmica espaço-temporal de zonas mortas costeiras no Golfo do México ao longo de 20 anos usando sensoriamento remoto]. Science of The Total Environment, v. 979, p. 179461, jun. 2025.

LIPIEC, J. et al. Soil porosity and water infiltration as influenced by tillage methods [Porosidade do solo e infiltração de água influenciadas por métodos de preparo do solo]. Soil and Tillage Research, v. 89, n. 2, p. 210–220, set. 2006.

LIU, Pengfei et al. Microbial Degradation of Soil Organic Pollutants: Mechanisms, Challenges, and Advances in Forest Ecosystem Management [Degradação microbiana de poluentes orgânicos do solo: mecanismos, desafios e avanços no manejo de ecossistemas florestais]. Processes, v. 13, n. 3, p. 916, 20 mar. 2025.

LONGEPIERRE, Manon et al. Mixed Effects of Soil Compaction on the Nitrogen Cycle Under Pea and Wheat [Efeitos mistos da compactação do solo no ciclo do nitrogênio sob ervilha e trigo]. Frontiers in Microbiology, v. 12, 7 mar. 2022.

M ROPER, Margaret; V S R GUPTA, Vadakattu. The living soil? an agricultural perspective [O solo vivo? uma perspectiva agrícola]. Microbiology Australia, v. 28, n. 3, p. 104, 2007.

MAAZ, Tai McClellan et al. Review of research and innovation on novel fertilizers for crop nutrition [Revisão da pesquisa e inovação em fertilizantes inovadores para nutrição de culturas]. npj Sustainable Agriculture, v. 3, n. 1, p. 25, 10 maio 2025.

MAHMUD, Kishan et al. Current Progress in Nitrogen Fixing Plants and Microbiome Research [Progresso atual em pesquisa de plantas fixadoras de nitrogênio e microbioma]. Plants, v. 9, n. 1, p. 97, 13 jan. 2020.

MARTINEZ-FERIA, Rafael et al. Genetic remodeling of soil diazotrophs enables partial replacement of synthetic nitrogen fertilizer with biological nitrogen fixation in maize [Remodelagem genética de diazótróficos do solo possibilita substituição parcial de fertilizante nitrogenado sintético por fixação biológica de nitrogênio no milho]. Scientific Reports, v. 14, n. 1, p. 27754, 12 nov. 2024.

MENON, Manoj et al. Pore system characteristics of soil aggregates and their relevance to aggregate stability [Características do sistema de poros de agregados do solo e sua relevância para a estabilidade dos agregados]. Geoderma, v. 366, p. 114259, maio 2020.

MENTA, Cristina; REMELLI, Sara. Soil Health and Arthropods: From Complex System to Worthwhile Investigation [Saúde do solo e artrópodes: de sistema complexo a investigação valiosa]. Insects, v. 11, n. 1, p. 54, 16 jan. 2020.

MESELE, Samuel A. et al. Current Problems Leading to Soil Degradation in Africa: Raising Awareness and Finding Potential Solutions [Problemas atuais que levam à degradação do solo na África: conscientização e busca de soluções potenciais]. European Journal of Soil Science, v. 76, n. 1, 14 jan. 2025.

MINAMI, Katsuyuki. Soil is a living substance [O solo é uma substância viva]. Soil Science and Plant Nutrition, v. 67, n. 1, p. 26–30, 2 jan. 2021.

MOHANTY, Bita et al. Biogeochemical Cycles in Soil Microbiomes in Response to Climate Change [Ciclos biogeoquímicos em microbiomas do solo em resposta às mudanças climáticas]. In: [S.l.: S.n.]. p. 491–519.

MONTGOMERY, David R.; BIKLÉ, Anne. Soil Health and Nutrient Density: Beyond Organic vs. Conventional Farming [Saúde do solo e densidade de nutrientes: além do orgânico versus agricultura convencional]. Frontiers in Sustainable Food Systems, v. 5, 4 nov. 2021a.

MONTGOMERY, David R.; BIKLÉ, Anne. Soil Health and Nutrient Density: Beyond Organic vs. Conventional Farming [Saúde do solo e densidade de nutrientes: além do orgânico versus agricultura convencional]. Frontiers in Sustainable Food Systems, v. 5, 4 nov. 2021b.

MONTGOMERY, David R.; BIKLÉ, Anne. Soil Health and Nutrient Density: Beyond Organic vs. Conventional Farming [Saúde do solo e densidade de nutrientes: além do orgânico versus agricultura convencional]. Frontiers in Sustainable Food Systems, v. 5, 4 nov. 2021c.

MONTGOMERY, David R.; BIKLÉ, Anne. Soil Health and Nutrient Density: Beyond Organic vs. Conventional Farming [Saúde do solo e densidade de nutrientes: além do orgânico versus agricultura convencional]. Frontiers in Sustainable Food Systems, v. 5, 4 nov. 2021d.

MONTGOMERY, David R.; BIKLÉ, Anne. Soil Health and Nutrient Density: Beyond Organic vs. Conventional Farming [Saúde do solo e densidade de nutrientes: além do orgânico versus agricultura convencional]. Frontiers in Sustainable Food Systems, v. 5, 4 nov. 2021e.

MOWAFY, Amr M. et al. Nitrogen-Fixing Archaea and Sustainable Agriculture [Arqueias fixadoras de nitrogênio e agricultura sustentável]. In: Maheshwari, Dinesh Kumar; Dobhal, Rajendra; Dheeman, Shrivardhan (Orgs.). Singapore: Springer Nature Singapore, 2022. v. 36 p. 115–126.

MUHAMMED, Shibu E. et al. Impact of two centuries of intensive agriculture on soil carbon, nitrogen and phosphorus cycling in the UK [Impacto de dois séculos de agricultura intensiva na ciclagem de carbono, nitrogênio e fósforo no solo no Reino Unido]. Science of The Total Environment, v. 634, p. 1486–1504, set. 2018.

NATURAL RESOURCES CONSERVATION SERVICE. What is Soil Health? [O que é saúde do solo?].

NUNES, Márcio R.; KARLEN, Douglas L.; MOORMAN, Thomas B. Tillage Intensity Effects on Soil Structure Indicators—A US Meta-Analysis [Efeitos da intensidade do preparo do solo em indicadores de estrutura do solo — uma meta-análise dos EUA]. Sustainability, v. 12, n. 5, p. 2071, 8 mar. 2020.

OLANREWAJU, Oluwaseyi Samuel; GLICK, Bernard R.; BABALOLA, Olubukola Oluranti. Mechanisms of action of plant growth promoting bacteria [Mecanismos de ação das bactérias promotoras do crescimento de plantas]. World Journal of Microbiology and Biotechnology, v. 33, n. 11, p. 197, 6 nov. 2017a.

OLANREWAJU, Oluwaseyi Samuel; GLICK, Bernard R.; BABALOLA, Olubukola Oluranti. Mechanisms of action of plant growth promoting bacteria [Mecanismos de ação das bactérias promotoras do crescimento de plantas]. World Journal of Microbiology and Biotechnology, v. 33, n. 11, p. 197, 6 nov. 2017b.

OLANREWAJU, Oluwaseyi Samuel; GLICK, Bernard R.; BABALOLA, Olubukola Oluranti. Mechanisms of action of plant growth promoting bacteria [Mecanismos de ação das bactérias promotoras do crescimento de plantas]. World Journal of Microbiology and Biotechnology, v. 33, n. 11, p. 197, 6 nov. 2017c.

ORTIZ, N. et al. Contribution of arbuscular mycorrhizal fungi and/or bacteria to enhancing plant drought tolerance under natural soil conditions: Effectiveness of autochthonous or allochthonous strains [Contribuição de fungos micorrízicos arbusculares e/ou bactérias para aumentar a tolerância à seca das plantas sob condições de solo natural: eficácia de cepas autóctones ou alóctones]. Journal of Plant Physiology, v. 174, p. 87–96, fev. 2015a.

ORTIZ, N. et al. Contribution of arbuscular mycorrhizal fungi and/or bacteria to enhancing plant drought tolerance under natural soil conditions: Effectiveness of autochthonous or allochthonous strains [Contribuição de fungos micorrízicos arbusculares e/ou bactérias para aumentar a tolerância à seca das plantas sob condições de solo natural: eficácia de cepas autóctones ou alóctones]. Journal of Plant Physiology, v. 174, p. 87–96, fev. 2015b.

PANAGOS, Panos et al. Cost of agricultural productivity loss due to soil erosion in the European Union: From direct cost evaluation approaches to the use of macroeconomic models [Custo da perda de produtividade agrícola devido à erosão do solo na União Europeia: de abordagens de avaliação de custo direto ao uso de modelos macroeconômicos]. Land Degradation & Development, v. 29, n. 3, p. 471–484, 30 mar. 2018.

PANAGOS, Panos et al. Understanding the cost of soil erosion: An assessment of the sediment removal costs from the reservoirs of the European Union [Compreendendo o custo da erosão do solo: avaliação dos custos de remoção de sedimentos dos reservatórios da União Europeia]. Journal of Cleaner Production, v. 434, p. 140183, jan. 2024.

PANDEY, Bipin K.; BENNETT, Malcolm J. Uncovering root compaction response mechanisms: new insights and opportunities [Descobrindo mecanismos de resposta à compactação das raízes: novos insights e oportunidades]. Journal of Experimental Botany, v. 75, n. 2, p. 578–583, 10 jan. 2024a.

PANDEY, Bipin K.; BENNETT, Malcolm J. Uncovering root compaction response mechanisms: new insights and opportunities [Descobrindo mecanismos de resposta à compactação das raízes: novos insights e oportunidades]. Journal of Experimental Botany, v. 75, n. 2, p. 578–583, 10 jan. 2024b.

PENG, Jue et al. Soil pore dynamics and infiltration characteristics as affected by cultivation duration for Mollisol in northeast China [Dinâmica dos poros do solo e características de infiltração afetadas pela duração do cultivo para Mollisol no nordeste da China]. Geoderma, v. 449, p. 117021, set. 2024.

PIETERSE, Corné M. J. et al. Induced Systemic Resistance by Beneficial Microbes [Resistência sistêmica induzida por microrganismos benéficos]. Annual Review of Phytopathology, v. 52, n. 1, p. 347–375, 4 ago. 2014.

PIMENTEL, David et al. Environmental and Economic Costs of Soil Erosion and Conservation Benefits [Custos ambientais e econômicos da erosão do solo e beneficios da conservação]. Science, v. 267, n. 5201, p. 1117–1123, 24 fev. 1995.

PINGALI, Prabhu L. Green Revolution: Impacts, limits, and the path ahead [Revolução Verde: impactos, limites e o caminho à frente]. Proceedings of the National Academy of Sciences, v. 109, n. 31, p. 12302–12308, 31 jul. 2012.

PORIA, Vikram et al. Plant Growth-Promoting Bacteria (PGPB) integrated phytotechnology: A sustainable approach for remediation of marginal lands [Bactérias promotoras do crescimento de plantas (PGPB) integradas à fitotecnologia: abordagem sustentável para remediação de terras marginais]. Frontiers in Plant Science, v. 13, 21 out. 2022.

PRISA, Domenico; FRESCO, Roberto; SPAGNUOLO, Damiano. Microbial Biofertilisers in Plant Production and Resistance: A Review [Biofertilizantes microbianos na produção vegetal e resistência: uma revisão]. Agriculture, v. 13, n. 9, p. 1666, 24 ago. 2023.

RESTORE THE MISSISSIPPI RIVER DELTA. Explaining the Gulf of Mexico Dead Zone [Explicando a zona morta do Golfo do México].

RILLIG, Matthias C.; MULLER, Ludo A. H.; LEHMANN, Anika. Soil aggregates as massively concurrent evolutionary incubators [Agregados do solo como incubadoras evolutivas massivamente concorrentes]. The ISME Journal, v. 11, n. 9, p. 1943–1948, 1 set. 2017.

ROBINSON, D. A. et al. Analytical modelling of soil porosity and bulk density across the soil organic matter and land-use continuum [Modelagem analítica da porosidade e densidade do solo ao longo do continuum matéria orgânica do solo e uso da terra]. Scientific Reports, v. 12, n. 1, p. 7085, 30 abr. 2022.

ROCA, Amalia; MONGE-OLIVARES, Laura; MATILLA, Miguel A. Antibiotic-producing plant-associated bacteria, anti-virulence therapy and microbiome engineering: Integrated approaches in sustainable agriculture [Bactérias associadas a plantas produtoras de antibióticos, terapia anti-virulência e engenharia do microbioma: abordagens integradas na agricultura sustentável]. Microbial Biotechnology, v. 17, n. 10, 9 out. 2024.

ROLÓN-CÁRDENAS, Gisela Adelina et al. The role of auxins and auxin-producing bacteria in the tolerance and accumulation of cadmium by plants [O papel das auxinas e bactérias produtoras de auxina na tolerância e acúmulo de cádmio por plantas]. Environmental Geochemistry and Health, v. 44, n. 11, p. 3743–3764, 13 nov. 2022.

ROUWENHORST, K. H. R. et al. Ammonia Production Technologies [Tecnologias de produção de amônia]. In: Techno-Economic Challenges of Green Ammonia as an Energy Vector. [S.l.]: Elsevier, 2021. p. 41–83.

RUIZ-LOZANO, J. M.; AZCÓN, R. Hyphal contribution to water uptake in mycorrhizal plants as affected by the fungal species and water status [Contribuição hifal para a absorção de água em plantas micorrízicas afetada pela espécie fúngica e estado hídrico]. Physiologia Plantarum, v. 95, n. 3, p. 472–478, 28 mar. 1995.

SAGAR, Alka et al. Plant Growth Promoting Rhizobacteria, Arbuscular Mycorrhizal Fungi and Their Synergistic Interactions to Counteract the Negative Effects of Saline Soil on Agriculture: Key Macromolecules and Mechanisms [Rhizobactérias promotoras do crescimento de plantas, fungos micorrízicos arbusculares e suas interações sinérgicas para contrabalançar os efeitos negativos do solo salino na agricultura: macromoléculas e mecanismos-chave]. Microorganisms, v. 9, n. 7, p. 1491, 13 jul. 2021.

SANTOS, Mariana Sanches; NOGUEIRA, Marco Antonio; HUNGRIA, Mariangela. Microbial inoculants: reviewing the past, discussing the present and previewing an outstanding future for the use of beneficial bacteria in agriculture [Inoculantes microbianos: revisando o passado, discutindo o presente e prevendo um futuro promissor para o uso de bactérias benéficas na agricultura]. AMB Express, v. 9, n. 1, p. 205, 21 dez. 2019.

SCHNITZER, M. Contribution of Organic Matter to the Cation Exchange Capacity of Soils [Contribuição da matéria orgânica para a capacidade de troca catiônica dos solos]. Nature, v. 207, n. 4997, p. 667–668, 1 ago. 1965.

SHARMA, Anish Kumar. Biofertilizer – A Key Player in Enhancing Soil Fertility and Agricultural Sustainability [Biofertilizante — um ator-chave no aumento da fertilidade do solo e sustentabilidade agrícola]. International Journal of Agriculture Environment and Biotechnology, v. 16, n. 2, 23 jun. 2023.

SHODMONOVA, Mukhlisa K. et al. Diversity of Antifungal Properties in Bacterial Isolates from Different Plant Species Growing Across Uzbekistan [Diversidade de propriedades antifúngicas em isolados bacterianos de diferentes espécies vegetais cultivadas no Uzbequistão]. Microorganisms, v. 13, n. 5, p. 1161, 20 maio 2025.

SHTIN, Margaryta; DELLO IOIO, Raffaele; DEL BIANCO, Marta. It's Time for a Change: The Role of Gibberellin in Root Meristem Development [É hora de mudar: o papel da giberelina no desenvolvimento do meristema radicular]. Frontiers in Plant Science, v. 13, 3 maio 2022.

SIFTON, Melanie A.; SMITH, Sandy M.; THOMAS, Sean C. Biochar-biofertilizer combinations enhance growth and nutrient uptake in silver maple grown in an urban soil [Combinações biochar-biofertilizante aumentam crescimento e absorção de nutrientes em bordo prateado cultivado em solo urbano]. PLOS ONE, v. 18, n. 7, p. e0288291, 18 jul. 2023.

SINGH, R. K. et al. Soil and nutrients losses under different crop covers in vertisols of Central India [Perdas de solo e nutrientes sob diferentes coberturas de culturas em vertissolos do centro da Índia]. Journal of Soils and Sediments, v. 20, n. 2, p. 609–620, 31 fev. 2020.

SMITH, Pete et al. Status of the World's Soils [Estado dos solos do mundo]. Annual Review of Environment and Resources, v. 49, n. 1, p. 73–104, 18 out. 2024.

SOLLY, Emily F. et al. A Critical Evaluation of the Relationship Between the Effective Cation Exchange Capacity and Soil Organic Carbon Content in Swiss Forest Soils [Avaliação crítica da relação entre capacidade de troca catiônica efetiva e teor de carbono orgânico do solo em solos florestais suíços]. Frontiers in Forests and Global Change, v. 3, 4 set. 2020.

SWAINE, Mark et al. Impact of pesticides on soil health: identification of key soil microbial indicators for ecotoxicological assessment strategies through meta-analysis [Impacto dos pesticidas na saúde do solo: identificação de indicadores microbianos-chave do solo para estratégias de avaliação ecotoxicológica por meta-análise]. FEMS Microbiology Ecology, v. 101, n. 6, 20 maio 2025.

TAMENE, Lulseged et al. Mapping soil erosion hotspots and assessing the potential impacts of land management practices in the highlands of Ethiopia [Mapeando hotspots de erosão do solo e avaliando impactos potenciais de práticas de manejo da terra nos planaltos da Etiópia]. Geomorphology, v. 292, p. 153–163, set. 2017.

TARAFDAR, J. C. Role of Soil Biology on Soil Health for Sustainable Agricultural Production [Papel da biologia do solo na saúde do solo para produção agrícola sustentável]. In: Structure and Functions of Pedosphere. Singapore: Springer Nature Singapore, 2022. p. 67–81.

TEY, Yeong Sheng; BRINDAL, Mark. Factors Influencing Farm Profitability [Fatores que influenciam a lucratividade da fazenda]. In: [S.l.: S.n.]. p. 235–255.

THEPBANDIT, Wannaporn; ATHINUWAT, Dusit. Rhizosphere Microorganisms Supply Availability of Soil Nutrients and Induce Plant Defense [Microorganismos da rizosfera fornecem disponibilidade de nutrientes do solo e induzem defesa nas plantas]. Microorganisms, v. 12, n. 3, p. 558, 11 mar. 2024.

TOTH, Marton et al. Long-term effects of tillage practices and future climate scenarios on topsoil organic carbon stocks in Lower Austria – A modelling and long-term experiment study [Efeitos a longo prazo das práticas de preparo do solo e cenários climáticos futuros nos estoques de carbono orgânico do horizonte superficial na Baixa Áustria — estudo de modelagem e experimento de longo prazo]. International Soil and Water Conservation Research, v. 13, n. 2, p. 486–499, jun. 2025.

TRIPATHI, Sachchidanand et al. Influence of synthetic fertilizers and pesticides on soil health and soil microbiology [Influência de fertilizantes sintéticos e pesticidas na saúde do solo e microbiologia do solo]. In: Agrochemicals Detection, Treatment and Remediation. [S.l.]: Elsevier, 2020. p. 25–54.

ULLAH, Fazal et al. Plant Microbiomes Alleviate Abiotic Stress-Associated Damage in Crops and Enhance Climate-Resilient Agriculture [Microbiomas de plantas aliviam danos associados ao estresse abiótico em culturas e aumentam a agricultura resiliente ao clima]. Plants, v. 14, n. 12, p. 1890, 19 jun. 2025a.

ULLAH, Fazal et al. Plant Microbiomes Alleviate Abiotic Stress-Associated Damage in Crops and Enhance Climate-Resilient Agriculture [Microbiomas de plantas aliviam danos associados ao estresse abiótico em culturas e aumentam a agricultura resiliente ao clima]. Plants, v. 14, n. 12, p. 1890, 19 jun. 2025b.

VOS, Rob et al. Global shocks to fertilizer markets: Impacts on prices, demand and farm profitability [Choques globais nos mercados de fertilizantes: impactos nos preços, demanda e lucratividade das fazendas]. Food Policy, v. 133, p. 102790, maio 2025.

WANG, Chengdong et al. Phosphorus solubilizing microorganisms: potential promoters of agricultural and environmental engineering [Micro-organismos solubilizadores de fósforo: promotores potenciais da engenharia agrícola e ambiental]. Frontiers in Bioengineering and Biotechnology, v. 11, 12 maio 2023a.

WANG, Kaibo et al. Soil degradation and restoration in arid and semi-arid regions [Degradação e restauração do solo em regiões áridas e semiáridas]. Frontiers in Environmental Science, v. 11, 17 out. 2023b.

WANG, Xueling; CHI, Yongkuan; SONG, Shuzhen. Important soil microbiota's effects on plants and soils: a comprehensive 30-year systematic literature review [Efeitos de microbiotas importantes do solo sobre plantas e solos: revisão sistemática abrangente de 30 anos]. Frontiers in Microbiology, v. 15, 25 mar. 2024a.

WANG, Xueling; CHI, Yongkuan; SONG, Shuzhen. Important soil microbiota's effects on plants and soils: a comprehensive 30-year systematic literature review [Efeitos de microbiotas importantes do solo sobre plantas e solos: revisão sistemática abrangente de 30 anos]. Frontiers in Microbiology, v. 15, 25 mar. 2024b.

WEIDHUNER, Amanda et al. Tillage impacts on soil aggregation and aggregate-associated carbon and nitrogen after 49 years [Impactos do preparo do solo na agregação do solo e no carbono e nitrogênio associados a agregados após 49 anos]. Soil and Tillage Research, v. 208, p. 104878, abr. 2021a.

WEIDHUNER, Amanda et al. Tillage impacts on soil aggregation and aggregate-associated carbon and nitrogen after 49 years [Impactos do preparo do solo na agregação do solo e no carbono e nitrogênio associados a agregados após 49 anos]. Soil and Tillage Research, v. 208, p. 104878, abr. 2021b.

WILDER, Shawn M. et al. Spider waste enhances soil nutrient content, soil respiration, and plant growth [Resíduos de aranhas aumentam o conteúdo de nutrientes do solo, respiração do solo e crescimento das plantas]. Functional Ecology, v. 39, n. 1, p. 140–153, 5 jan. 2025.

WU, Haitao et al. Soil engineering ants increase CO2 and N2O emissions by affecting mound soil physicochemical characteristics from a marsh soil: A laboratory study [Formigas engenheiras do solo aumentam emissões de CO2 e N2O afetando características físico-químicas do solo de montículo provenientes de solo pantanoso: estudo de laboratório]. Applied Soil Ecology, v. 87, p. 19–26, mar. 2015.

WU, Wenqi et al. The diverse roles of cytokinins in regulating leaf development [Os diversos papéis das citocininas na regulação do desenvolvimento foliar]. Horticulture Research, v. 8, n. 1, p. 118, 1 dez. 2021.

YAN, Yuanyuan et al. Transitions within agroecosystems impact protists diversity and soil multifunctionality [Transições em agroecossistemas impactam a diversidade de protistas e a multifuncionalidade do solo]. Communications Earth & Environment, v. 6, n. 1, p. 634, 6 ago. 2025.

YANG, Yi et al. Soil porosity as a key factor of soil aggregate stability: insights from restricted grazing [Porosidade do solo como fator-chave da estabilidade de agregados do solo: insights a partir de pastoreio restrito]. Frontiers in Environmental Science, v. 12, 24 jan. 2025a.

YANG, Yi et al. Soil porosity as a key factor of soil aggregate stability: insights from restricted grazing [Porosidade do solo como fator-chave da estabilidade de agregados do solo: insights a partir de pastoreio restrito]. Frontiers in Environmental Science, v. 12, 24 jan. 2025b.

YUNUS, Mujahid Umar et al. A Review of Biofertilizer Production: Bioreactor, Feedstocks and Kinetics [Revisão da produção de biofertilizantes: biorreator, matérias-primas e cinética]. International Journal of Recent Engineering Science, v. 9, n. 1, p. 39–49, 25 fev. 2022.

ZHANG, Chao; LOW, Jingxiang; XIONG, Yujie. Ecochemistry for Biogeochemical Cycles: Learning from Nature, Serving for Nature [Ecoquímica para ciclos biogeoquímicos: aprendendo com a natureza, servindo à natureza]. Artificial Photosynthesis, v. 1, n. 3, p. 117–124, 22 maio 2025.

ZHOU, Xiaorong et al. Soil bacterial communities associated with multi-nutrient cycling under long-term warming in the alpine meadow [Comunidades bacterianas do solo associadas à ciclagem de múltiplos nutrientes sob aquecimento de longo prazo em pradaria alpina]. Frontiers in Microbiology, v. 14, 23 fev. 2023.